The SARS-CoV-2 conserved macrodomain is a highly efficient ADP-ribosylhydrolase enzyme
The SARS-CoV-2 conserved macrodomain is a highly efficient ADP-ribosylhydrolase enzyme
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-like-CoVs encode 3 tandem macrodomains within non-structural protein 3 (nsp3). The first of these macrodomains, termed Mac1, is conserved throughout CoVs, binds to mono- and poly-ADP-ribose, and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating this domain as a prominent virulence factor and potential therapeutic target. Mac1 likely counters host-mediated antiviral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Here we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose refined at 2.2 Å resolution. SARS-CoV-2, SARS-CoV and MERS-CoV Mac1 exhibit similar structural folds and ADP-ribose binding modes as shown by structural comparison. All three CoV Mac1 proteins bound to ADP-ribose with low μM affinities. They also demonstrated highly efficient de-MARylating activity, which was greater than that of the human Mdo2 macrodomain. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are highly efficient ADP-ribosylhydrolases with strikingly similar activity, indicating that compounds targeting CoV Mac1 proteins may have broad antiviral activity against CoVs.
- University of Kansas United States
- University of Kansas, Department of Molecular Biosciences United States
- New York Structural Biology Center United States
- UNIVERSITY OF KANSAS LAWRENCE
1 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
