Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellular Microbiolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions

In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination.

Authors: Zakikhany, K; Naglik, J; Schmidt-Westhausen, A; Holland, G; Schaller, M; Hube, B;

In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination.

Abstract

Candida albicans is the most common oral fungal pathogen of humans, but the mechanisms by which C. albicans invades and persists within mucosal epithelium are not clear. To understand oral pathogenesis, we characterized the cellular and molecular mechanisms of epithelial-fungus interactions using reconstituted human oral epithelium (RHE). We observed that hyphal formation facilitates epithelial invasion via both active (physical penetration) and passive (induced endocytosis) processes. Genome wide transcript profiling of C. albicans experimental RHE infection was compared with that from 11 patient samples with pseudomembranous candidiasis to identify genes associated with disease development in vivo. Expression profiles reflected the morphological switch and an adaptive response to neutral pH, non-glucose carbon sources and nitrosative stress. We identified several novel infection-associated genes with unknown function. One gene, upregulated in both RHE infection and patients, named EED1, was essential for maintenance of hyphal elongation. Mutants lacking EED1 showed transient cell elongation on epithelial tissue, which enabled only superficial invasion of epithelial cells. Once inside an epithelial cell, Deltaeed1 cells could proliferate as yeasts or pseudohyphae but remained trapped intracellularly. Our results suggest that the adaptive response and morphology of C. albicans play specific roles for host-fungal interactions during mucosal infections.

Keywords

570, Gene Expression Profiling, Hyphae, Epithelial Cells, Epithelium, Cell Line, Up-Regulation, Fungal Proteins, Organ Culture Techniques, Gene Expression Regulation, Fungal, Candida albicans, Humans, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    250
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
250
Top 1%
Top 10%
Top 1%