Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubMed Centralarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2011
License: CC BY
Data sources: PubMed Central
versions View all 2 versions

Anthrolysin O and fermentation products mediate the toxicity of Bacillus anthracis to lung epithelial cells under microaerobic conditions.

Authors: Popova, Taissia G; Millis, Bryan; Chung, Myung-Chul; Bailey, Charles; Popov, Serguei G;

Anthrolysin O and fermentation products mediate the toxicity of Bacillus anthracis to lung epithelial cells under microaerobic conditions.

Abstract

Bacillus anthracis generates virulence factors such as lethal and edema toxins, capsule, and hemolytic proteins under conditions of reduced oxygenation. Here, we report on the acute cytotoxicity of culture supernatants (Sups) of six nonencapsulated B. anthracis strains grown till the stationary phase under static microaerobic conditions. Human small airway epithelial, umbilical vein endothelial, Caco-2, and Hep-G2 cells were found to be susceptible. Sups displayed a reduction of pH to 5.3-5.5, indicating the onset of acid anaerobic fermentation; however, low pH itself was not a major factor of toxicity. The pore-forming hemolysin, anthrolysin O (ALO), contributed to the toxicity in a concentration-dependent manner. Its effect was found to be synergistic with a metabolic product of B. anthracis, succinic acid. Cells exposed to Sups demonstrated cytoplasmic membrane blebbing, increased permeability, loss of ATP, mitochondrial membrane potential collapse, and arrest of cell respiration. The toxicity was reduced by inhibition of ALO by cholesterol, decomposition of reactive oxygen species, and inhibition of mitochondrial succinate dehydrogenase. Cell death appears to be caused by an acute primary membrane permeabilization by ALO, followed by a burst of reactive radicals from the mitochondria fuelled by the succinate, which is generated by bacteria in the hypoxic environment. This mechanism of metabolic toxicity is relevant to the late-stage conditions of hypoxia and acidosis found in anthrax patients and might operate at anatomical locations of the host deprived from oxygen supply.

Keywords

Membrane Glycoproteins, Cell Survival, Bacterial Toxins, Succinic Acid, Epithelial Cells, Hep G2 Cells, Hydrogen-Ion Concentration, Aerobiosis, Recombinant Proteins, Mitochondria, Cholesterol, Bacterial Proteins, Bacillus anthracis, Culture Media, Conditioned, Fermentation, Humans, Caco-2 Cells, Reactive Oxygen Species, Lung, Research Articles, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Green