Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions

siRNA-mediated silencing of CDK8 inhibits proliferation and growth in breast cancer cells.

Authors: Xiao-Yu, Li; Qi-Feng, Luo; Chuan-Kui, Wei; Deng-Feng, Li; Lin, Fang;

siRNA-mediated silencing of CDK8 inhibits proliferation and growth in breast cancer cells.

Abstract

CDK8 is a cyclin-dependent kinase (CDK) member of the mediator complex that couples transcriptional regulators to the basal transcriptional machinery, and it has been investigated for possible tumor promoting functions. However, it is unclear whether CDK8 is involved in breast tumor cells growth. The aim of this study was to determine whether the suppression of CDK8 by small interfering RNA (siRNA) inhibits the growth of human breast cancer cell.CDK8-siRNA transfection was used to silencing the CDK8 gene in established breast cancer cell line, MDA-MB-231 and MCF-7, successful transfection being confirmed by Real-time PCR and could be shown by Western Blotting. CDK8 deletion caused significant decline in cell proliferation was observed in breast cancer cell lines as investigated by MTS assay, the number and size of the colonies formed were also significantly reduced in the absence of CDK8. Furthermore, transwell test were conducted to explore the migration of breast cancer cells. Moreover CDK8 gene knockdown arrested cell cycle.CDK8 mRNA expression was reduced after transfection with CDK8-siRNA, and protein expression had a similar trend. Transfection of CDK8-siRNA suppressed breast cancer cells proliferation and migration; meanwhile the cells were arrested at G0/G1 phase.CDK8 plays an essential role in breast cancer progression, which might inhibit the proliferation and migration in breast cancer cells.

Related Organizations
Keywords

Cell Transformation, Neoplastic, Gene Knockdown Techniques, Blotting, Western, MCF-7 Cells, Humans, Breast Neoplasms, Female, RNA, Small Interfering, Cyclin-Dependent Kinase 8, Real-Time Polymerase Chain Reaction, Transfection, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
gold
Related to Research communities
Cancer Research