Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Serotonin 5- HT (2C) receptor knockout mice: autoradiographic analysis of multiple serotonin receptors.

Authors: López-Giménez, Juan F.; Tecott, Laurence H.; Palacios, José M.; Mengod Los Arcos, Guadalupe; Vilaró, Maria Teresa;

Serotonin 5- HT (2C) receptor knockout mice: autoradiographic analysis of multiple serotonin receptors.

Abstract

Quantitative receptor autoradiography was used to study possible alterations of the densities of multiple serotonin (5-HT) receptor subtypes and of serotonin transporter in the brain of 5-HT(2C) receptor knockout mice. The radioligands employed were [(3)H]citalopram, [(3)H]WAY100,635, [(3)H]8-OH-DPAT, [(3)H]GR125743, [(3)H]sumatriptan, [(3)H]MDL100,907, [(125)I](+/-)DOI, [(3)H]mesulergine, [(3)H]5-HT, [(3)H]GR113808, and [(3)H]5-CT. As expected, radioligands that label 5-HT(2C) receptors showed a complete absence of labeling in mutant mice choroid plexus and significantly reduced densities in other brain regions expressing 5-HT(2C) receptors. With the rest of the radioligands, no significant alterations in the densities of labeled sites were found in any brain region. In situ hybridization showed no changes in 5-HT(2A) receptor and serotonin transporter mRNA levels, whereas 5-HT(2C) receptor mRNA levels were reduced in certain brain regions. The present results indicate that the mouse serotonergic system does not exhibit compensatory up- or down-regulation of the majority of its components (serotonin transporter and most 5-HT receptor subtypes) in response to the absence of 5-HT(2C) receptors.

Keywords

Male, Serotonin, 5-HT receptors, Nerve Tissue Proteins, Iodine Radioisotopes, Mice, Radioligand Assay, Receptor, Serotonin, 5-HT2C, Animals, RNA, Messenger, In Situ Hybridization, Brain Chemistry, Mice, Knockout, Neurons, Mouse brain, Binding Sites, Membrane Glycoproteins, Brain, Membrane Transport Proteins, Immunohistochemistry, 5-HT transporter, Gene Expression Regulation, Receptors, Serotonin, Autoradiography, Carrier Proteins, In situ hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 22
    download downloads 25
  • 22
    views
    25
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
63
Top 10%
Top 10%
Top 10%
22
25
Green