Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Virologicaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Virologica
Article . 2004
versions View all 1 versions

The human interferon system: characterization and classification after discovery of novel members.

Authors: P, Kontsek; G, Karayianni-Vasconcelos; E, Kontseková;

The human interferon system: characterization and classification after discovery of novel members.

Abstract

The human interferon (IFN) system is the best characterized of all animal IFN systems. Until recently it is thought that all IFNs and IFN-related genes and proteins have been discovered. However, in the last three years, the discovery and characterization of IFNs including IFN-epsilon (IFN-epsilon), IFN-kappa (IFN-kappa) and a novel IFN-lambda (IFN-lambda) family, in particular, substantially changed this opinion. In this article, we attempt to review recent developments in the field of interferon discovery and present an overview of current classification of the human IFN system. Characterization of the constituent parts of the human IFN system including ligands, receptors and players involved in the signal transduction pathway are discussed.

Keywords

Molecular Structure, Sequence Homology, Amino Acid, Molecular Sequence Data, Chromosome Mapping, Ligands, Chromosomes, Human, Humans, Amino Acid Sequence, Interferons, Phylogeny, Receptors, Interferon, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%
gold