Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Halarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2008
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Inserm
Article . 2008
Data sources: HAL-Inserm
versions View all 4 versions

The histone subcode: poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1beta and the heterochromatin protein HP1alpha.

Authors: Quénet, Delphine; Gasser, Véronique; Fouillen, Laetitia; Cammas, Florence; Sanglier-Cianferani, Sarah; Losson, Régine; Dantzer, Françoise;

The histone subcode: poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1beta and the heterochromatin protein HP1alpha.

Abstract

Recent advances reveal emerging unique functions of poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 in heterochromatin integrity and cell differentiation. However, the chromatin-mediated molecular and cellular events involved remain elusive. Here we describe specific physical and functional interactions of Parp-1 and Parp-2 with the transcriptional intermediary factor (TIF1beta) and the heterochromatin proteins (HP1) that affect endodermal differentiation. We show that Parp-2 binds to TIF1beta with high affinity both directly and through HP1alpha. Both partners colocalize at pericentric heterochromatin in primitive endoderm-like cells. Parp-2 also binds to HP1beta but not to HP1gamma. In contrast Parp-1 binds weakly to TIF1beta and HP1beta only. Both Parps selectively poly(ADP-ribosyl)ate HP1alpha. Using shRNA approaches, we provide evidence for distinct participation of both Parps in endodermal differentiation. Whereas Parp-2 and its activity are required for the relocation of TIF1beta to heterochromatic foci during primitive endodermal differentiation, Parp-1 and its activity modulate TIF1beta-HP1alpha association with consequences on parietal endodermal differentiation. Both Parps control TIF1beta transcriptional activity. In addition, this work identifies both Parps as new modulators of the HP1-mediated subcode histone.-Quénet, D., Gasser, V., Fouillen, L., Cammas, F., Sanglier-Cianferani, S., Losson, R., Dantzer, F. The histone subcode: poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1beta and the heterochromatin protein HP1alpha.

Keywords

MESH: Cell Differentiation, MESH: Humans, Chromosomal Proteins, Non-Histone, MESH: Poly(ADP-ribose) Polymerases, Endoderm, Poly (ADP-Ribose) Polymerase-1, Cell Differentiation, Non-Histone, Tripartite Motif-Containing Protein 28, [SDV.ETH] Life Sciences [q-bio]/Ethics, MESH: Cell Line, MESH: Chromosomal Proteins, MESH: Endoderm, [SDV.ETH]Life Sciences [q-bio]/Ethics, Cell Line, DNA-Binding Proteins, Repressor Proteins, MESH: Heterochromatin, MESH: Repressor Proteins, Chromobox Protein Homolog 5, Heterochromatin, Humans, Poly(ADP-ribose) Polymerases, MESH: DNA-Binding Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
Related to Research communities
STARS EU