Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Halarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2011
Data sources: Hal
versions View all 2 versions

β₁-Adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated β₃-adrenergic receptor-knockout mice via nonshivering thermogenesis.

Authors: Mattsson, Charlotte L; Csikasz, Robert I; Chernogubova, Ekaterina; Yamamoto, Daniel L; Hogberg, Helena T; Amri, Ez-Zoubir; Hutchinson, Dana S; +1 Authors

β₁-Adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated β₃-adrenergic receptor-knockout mice via nonshivering thermogenesis.

Abstract

With the finding that brown adipose tissue is present and negatively correlated to obesity in adult man, finding the mechanism(s) of how to activate brown adipose tissue in humans could be important in combating obesity, type 2 diabetes, and their complications. In mice, the main regulator of nonshivering thermogenesis in brown adipose tissue is norepinephrine acting predominantly via β(3)-adrenergic receptors. However, vast majorities of β(3)-adrenergic agonists have so far not been able to stimulate human β(3)-adrenergic receptors or brown adipose tissue activity, and it was postulated that human brown adipose tissue could be regulated instead by β(1)-adrenergic receptors. Therefore, we have investigated the signaling pathways, specifically pathways to nonshivering thermogenesis, in mice lacking β(3)-adrenergic receptors. Wild-type and β(3)-knockout mice were either exposed to acute cold (up to 12 h) or acclimated for 7 wk to cold, and parameters related to metabolism and brown adipose tissue function were investigated. β(3)-knockout mice were able to survive both acute and prolonged cold exposure due to activation of β(1)-adrenergic receptors. Thus, in the absence of β(3)-adrenergic receptors, β(1)-adrenergic receptors are effectively able to signal via cAMP to elicit cAMP-mediated responses and to recruit and activate brown adipose tissue. In addition, we found that in human multipotent adipose-derived stem cells differentiated into functional brown adipocytes, activation of either β(1)-adrenergic receptors or β(3)-adrenergic receptors was able to increase UCP1 mRNA and protein levels. Thus, in humans, β(1)-adrenergic receptors could play an important role in regulating nonshivering thermogenesis.

Keywords

Male, Mice, Knockout, Acclimatization, Multipotent Stem Cells, Shivering, Down-Regulation, Cell Differentiation, Epistasis, Genetic, Thermogenesis, Ion Channels, Cold Temperature, Mitochondrial Proteins, Mice, Adipocytes, Brown, Receptors, Adrenergic, beta-3, [SDV.BDD] Life Sciences [q-bio]/Development Biology, Animals, Humans, Female, Receptors, Adrenergic, beta-1, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
Related to Research communities