Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao University of Copenh...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions

AHSG tag single nucleotide polymorphisms associate with type 2 diabetes and dyslipidemia: studies of metabolic traits in 7,683 white Danish subjects.

Authors: Andersen, Gitte; Burgdorf, Kristoffer Sølvsten; Sparsø, Thomas; Borch-Johnsen, Knut; Jørgensen, Torben; Hansen, Torben; Pedersen, Oluf;

AHSG tag single nucleotide polymorphisms associate with type 2 diabetes and dyslipidemia: studies of metabolic traits in 7,683 white Danish subjects.

Abstract

The gene encoding the alpha2 Heremans-Schmid glycoprotein (AHSG) is a credible biological and positional candidate gene for type 2 diabetes and the metabolic syndrome, and previous attempts to relate AHSG variation with type 2 diabetes and obesity in Swedish and French Caucasians have been largely successful. We related seven frequent AHSG tag single nucleotide polymorphisms to a range of metabolic traits, including type 2 diabetes, obesity, and dyslipidemia.The polymorphisms were genotyped in 7,683 white Danish subjects using Taqman allelic discrimination or chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, providing a statistical power of >99% to replicate previous findings. Data were analyzed in case-control and haplotype settings, and quantitative metabolic traits were examined for association. Moreover, epistatic effects between AHSG variants and insulin receptor substrate-1 (IRS1) and beta-2-adrenergic receptor polymorphisms were investigated.The -469T>G (rs2077119) and IVS6+98C>T (rs2518136) polymorphisms were associated with type 2 diabetes (P = 0.007 and P = 0.006, respectively, or P(corr) = 0.04 and P(corr) = 0.03, respectively, following correction for multiple hypothesis testing), and in a combined analysis of the present and a previous study -469T>G remained significant (odds ratio 0.90 [95% CI 0.84-0.97]; P = 0.007). Furthermore, two AHSG haplotypes were associated with dyslipidemia (P = 0.003 and P(corr) = 0.009). Thr248Met (rs4917) tended to associate with lower fasting and post-oral glucose tolerance test serum insulin release (P = 0.02, P(corr) = 0.1 for fasting and P = 0.04, P(corr) = 0.2 for area under the insulin curve) and improved insulin sensitivity estimated by the homeostasis model assessment of insulin resistance (9.0 vs. 8.6 mmol x l(-1) x pmol(-1) x l(-1); P = 0.01, P(corr) = 0.06). Indications of epistatic effects of AHSG variants with the IRS1 Gly971Arg polymorphism were observed for fasting serum triglyceride concentrations.Based on present and previous findings, common variation in AHSG may contribute to the interindividual variation in metabolic traits.

Keywords

Glycated Hemoglobin, Male, alpha-2-HS-Glycoprotein, Denmark, Genetic Variation, Blood Proteins, Middle Aged, Polymorphism, Single Nucleotide, White People, Diabetes Mellitus, Type 2, Insulin Receptor Substrate Proteins, Humans, Female, Obesity, Adaptor Proteins, Signal Transducing, Dyslipidemias

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Related to Research communities