Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://dx.doi.org/10...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Structure
Article . 2003
versions View all 2 versions

Structure and interactions of PAS kinase N-terminal PAS domain: model for intramolecular kinase regulation.

Authors: Amezcua, Carlos A; Harper, Shannon M; Rutter, Jared; Gardner, Kevin H;

Structure and interactions of PAS kinase N-terminal PAS domain: model for intramolecular kinase regulation.

Abstract

PAS domains are sensory modules in signal-transducing proteins that control responses to various environmental stimuli. To examine how those domains can regulate a eukaryotic kinase, we have studied the structure and binding interactions of the N-terminal PAS domain of human PAS kinase using solution NMR methods. While this domain adopts a characteristic PAS fold, two regions are unusually flexible in solution. One of these serves as a portal that allows small organic compounds to enter into the core of the domain, while the other binds and inhibits the kinase domain within the same protein. Structural and functional analyses of point mutants demonstrate that the compound and ligand binding regions are linked, suggesting that the PAS domain serves as a ligand-regulated switch for this eukaryotic signaling system.

Keywords

PAS domain, Models, Molecular, Binding Sites, PAS kinase, Protein Conformation, ligand binding, kinase regulation, Protein Serine-Threonine Kinases, Ligands, NMR screening

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    139
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
139
Top 10%
Top 10%
Top 1%