Neurexin I alpha is a major alpha-latrotoxin receptor that cooperates in alpha-latrotoxin action.
Neurexin I alpha is a major alpha-latrotoxin receptor that cooperates in alpha-latrotoxin action.
alpha-Latrotoxin is a potent neurotoxin from black widow spider venom that binds to presynaptic receptors and causes massive neurotransmitter release. A surprising finding was the biochemical description of two distinct cell surface proteins that bind alpha-latrotoxin with nanomolar affinities; Neurexin I alpha binds alpha-latrotoxin in a Ca(2+)-dependent manner, and CIRL/latrophilin binds in a Ca(2+)-independent manner. We have now generated and analyzed mice that lack neurexin I alpha to test its importance in alpha-latrotoxin action. alpha-Latrotoxin binding to brain membranes from mutant mice was decreased by almost 50% compared with wild type membranes; the decrease was almost entirely due to a loss of Ca(2+)-dependent alpha-latrotoxin binding sites. In cultured hippocampal neurons, alpha-latrotoxin was still capable of activating neurotransmission in the absence of neurexin I alpha. Direct measurements of [3H]glutamate release from synaptosomes, however, showed a major decrease in the amount of release triggered by alpha-latrotoxin in the presence of Ca2+. Thus neurexin I alpha is not essential for alpha-latrotoxin action but contributes to alpha-latrotoxin action when Ca2+ is present. Viewed as a whole, our results show that mice contain two distinct types of alpha-latrotoxin receptors with similar affinities and abundance but different properties and functions. The action of alpha-latrotoxin may therefore be mediated by independent parallel pathways, of which the CIRL/latrophilin pathway is sufficient for neurotransmitter release, whereas the neurexin I alpha pathway contributes to the Ca(2+)-dependent action of alpha-latrotoxin.
Mice, Knockout, Receptors, Peptide, Cell Membrane, Neuropeptides, Brain, Chromosome Mapping, Glutamic Acid, Spider Venoms, Nerve Tissue Proteins, Synaptic Transmission, Alternative Splicing, Mice, Animals, Calcium, Glycoproteins, Synaptosomes
Mice, Knockout, Receptors, Peptide, Cell Membrane, Neuropeptides, Brain, Chromosome Mapping, Glutamic Acid, Spider Venoms, Nerve Tissue Proteins, Synaptic Transmission, Alternative Splicing, Mice, Animals, Calcium, Glycoproteins, Synaptosomes
19 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).90 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
