Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

Agonist-induced, G protein-dependent and -independent down-regulation of the mu opioid receptor. The receptor is a direct substrate for protein-tyrosine kinase.

Authors: Y, Pak; B F, O'Dowd; J B, Wang; S R, George;

Agonist-induced, G protein-dependent and -independent down-regulation of the mu opioid receptor. The receptor is a direct substrate for protein-tyrosine kinase.

Abstract

The mu opioid receptor (MOR) has been shown to desensitize after 1 h of exposure to the opioid peptide, [D-Ala(2), N-MePhe(4), Gly-ol(5)]enkephalin (DAMGO), largely by the loss of receptors from the cell surface and receptor down-regulation. We have previously shown that the Thr(394) in the carboxyl tail is essential for agonist-induced early desensitization, presumably by serving as a primary phosphorylation site for G protein-coupled receptor kinase. Using a T394A mutant receptor, we determined that Thr(394) was also responsible for mu opioid receptor down-regulation. The T394A mutant receptor displayed 50% reduction of receptor down-regulation (14.8%) compared with wild type receptor (34%) upon 1 h of exposure to DAMGO. Agonist-induced T394A receptor down-regulation was unaffected by pertussis toxin treatment, indicating involvement of a mechanism independent of G protein function. Interestingly, pertussis toxin-insensitive T394A receptor down-regulation was completely inhibited by a tyrosine kinase inhibitor, genistein. Tyrosine kinase inhibition blocked wild type MOR down-regulation by 50%, and the genistein-resistant wild type MOR down-regulation was completely pertussis toxin-sensitive. Following DAMGO stimulation, MOR was shown to be phosphorylated at tyrosine residue(s), indicating that the receptor was a direct substrate for tyrosine kinase action. Mutagenesis of the four intracellular tyrosine residues resulted in complete inhibition of the G protein-insensitive MOR internalization. Therefore, agonist-induced MOR down-regulation appears to be mediated by two distinct cellular signal transduction pathways. One is G protein-dependent and GRK-dependent, which can be abolished by pertussis toxin treatment of wild type MOR or by mutagenesis of Thr(394). The other novel pathway is G protein-independent but tyrosine kinase-dependent, blocked by genistein treatment, and one in which Thr(394) has no regulatory role but phosphorylation of tyrosine residues appears essential.

Related Organizations
Keywords

Naloxone, Molecular Sequence Data, Receptors, Opioid, mu, Down-Regulation, CHO Cells, Enkephalin, Ala(2)-MePhe(4)-Gly(5)-, Protein-Tyrosine Kinases, Cyclic AMP-Dependent Protein Kinases, Cell Line, Rats, Amino Acid Substitution, Pertussis Toxin, GTP-Binding Proteins, Cricetinae, Mutagenesis, Site-Directed, Animals, Amino Acid Sequence, Enzyme Inhibitors, Phosphorylation, Protein Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Average
Top 10%
Top 1%
gold