<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Microsatellite instability at selected tetranucleotide repeats is associated with p53 mutations in non-small cell lung cancer.

Microsatellite instability at selected tetranucleotide repeats is associated with p53 mutations in non-small cell lung cancer.
Microsatellite alterations are useful clonal markers for the early detection of cancer. An increase in microsatellite instability has been observed at certain tetranucleotide repeat markers (AAAGn) in lung, head and neck, and bladder cancer. However, the genetic mechanism underlying these elevated microsatellite alterations at selected tetranucleotide repeat (EMAST) tumors is still unknown. The p53 gene plays an important role in maintaining genome integrity by repairing damaged DNA. Therefore, we tested 88 non-small cell lung cancers with a panel of 13 microsatellite markers previously shown to exhibit frequent instability and also performed p53 sequence analysis in these tumors. Thirty-one of these 88 cancers (35%) demonstrated a novel allele [EMAST(+)] in > or =1 of these 13 microsatellite markers. p53 mutations were detected in 50 of 88 (57%) cancers and were significantly (P = 0.001) more common in EMAST(+) tumors (25 of 31; 81%) than in EMAST(-) tumors (25 of 57; 44%). Among squamous cell cancers, p53 mutations were detected significantly (P = 0.04) more frequently in EMAST(+) tumors (17 of 19; 89%) than in EMAST(-) tumors (10 of 18; 55%). Similarly, among primary adenocarcinomas, p53 mutations were present in 67% of the EMAST(+) tumors and in 35% of EMAST(-) adenocarcinomas. None of the 31 EMAST(+) tumors demonstrated high frequency microsatellite instability when examined with a reference panel of five mono- and dinucleotide markers. Primary lung cancers with microsatellite alterations at selected tetranucleotide repeats have a high frequency of p53 mutations and do not display a phenotype consistent with defects in mismatch repair.
- Medical College of Wisconsin United States
Lung Neoplasms, Carcinoma, Non-Small-Cell Lung, DNA Mutational Analysis, Mutation, Humans, Neoplasms, Squamous Cell, Adenocarcinoma, Genes, p53, Microsatellite Repeats
Lung Neoplasms, Carcinoma, Non-Small-Cell Lung, DNA Mutational Analysis, Mutation, Humans, Neoplasms, Squamous Cell, Adenocarcinoma, Genes, p53, Microsatellite Repeats
131 Research products, page 1 of 14
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).78 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%