Powered by OpenAIRE graph

Differential dependence of the tumorigenicity of chemically transformed rat liver epithelial cells on autocrine production of transforming growth factor alpha.

Authors: S K, Duddy; H S, Earp; W E, Russell; G J, Smith; J W, Grisham;

Differential dependence of the tumorigenicity of chemically transformed rat liver epithelial cells on autocrine production of transforming growth factor alpha.

Abstract

The tumorigenic phenotype in rat liver epithelial cells overexpressing c-myc may depend on a transforming growth factor (TGF)-alpha/epidermal growth factor receptor autocrine loop (L. W. Lee et al., Cancer Res., 51: 5238-5244, 1991). In the present study, we have used constitutive sense and antisense TGF-alpha expression vectors to modify TGF-alpha production in carcinogen-transformed clonal derivatives of a rat liver epithelial cell line, WB-F344, that variably express c-myc, endogenous TGF-alpha, and tumorigenicity. Transgene-mediated TGF-alpha protein production was elevated 2- to 9-fold in derivatives of a low c-myc-expressing transformed cell line, GN4, and 35-fold in a derivative of a high c-myc-expressing cell line, GN6. Although the GN4- and GN6-derived cell lines expressed functional EGF receptor and steady-state c-myc mRNA levels that were comparable to their respective parental cell lines, increased TGF-alpha expression did not increase the tumorigenicity of the derivatives relative to the parental cell lines. Similarly, in vitro growth characteristics of the GN4- and GN6-derived cell lines were not markedly altered by increased autocrine TGF-alpha production. Additionally, GN4, GN6, and their derivatives were, for the most part, unresponsive to exogenously applied TGF-alpha in vitro. In contrast, antisense TGF-alpha RNA expression significantly suppressed endogenous TGF-alpha production in a high c-myc-expressing, high TGF-alpha-expressing, highly tumorigenic clonal line, GP9; this suppression resulted in lowered steady-state c-myc levels and attenuated in vitro growth. Antisense-mediated suppression of all of these in vitro phenotypes in GP9 was reversed by exogenous TGF-alpha. The latency of tumor formation by the antisense derivative of cell line GP9 was significantly lengthened (> 3-fold) relative to the time required for tumor formation by its parental cell line. These results demonstrate that a TGF-alpha/epidermal growth factor receptor autocrine loop may be necessary for exaggerated in vitro and in vivo growth of some transformed rat liver epithelial cells (e.g., GP9); however, the autocrine loop is not generally sufficient to support tumorigenicity, even in transformed clonal lines expressing elevated levels of c-myc.

Related Organizations
Keywords

Carcinogenicity Tests, Blotting, Western, Cell Count, Transforming Growth Factor alpha, Blotting, Northern, Transfection, Actins, Rats, Inbred F344, Rats, ErbB Receptors, Gene Expression Regulation, Neoplastic, Proto-Oncogene Proteins c-myc, Mice, Cell Transformation, Neoplastic, Animals, Humans, RNA, Antisense, RNA, Messenger, Cell Division, Cell Line, Transformed

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Related to Research communities
Cancer Research