Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

Model for the factor VIIIa-dependent decay of the intrinsic factor Xase. Role of subunit dissociation and factor IXa-catalyzed proteolysis.

Authors: P J, Fay; T L, Beattie; L M, Regan; L M, O'Brien; R J, Kaufman;

Model for the factor VIIIa-dependent decay of the intrinsic factor Xase. Role of subunit dissociation and factor IXa-catalyzed proteolysis.

Abstract

The intrinsic factor Xase complex (FXase) is comprised of a serine protease, FIXa, and a protein cofactor, FVIIIa, assembled on a phospholipid surface. Activity of FXase decays with time and reflects the lability of FVIIIa. Two mechanisms potentially contribute to this decay: (i) a weak affinity interaction between the FVIIIa A2 subunit and Al/A3-Cl-C2 dimer and (ii) FVIIIa inactivation resulting from FIXa-catalyzed proteolysis of the Al subunit. At low reactant concentrations (0.5 nm FVIIIa; 5 nm FIXa), FXase decay is governed by the inter-FVIIIa subunit affinity and residual activity approaches a value consistent with this equilibrium, as judged by reactions containing exogenous A2 subunit. Analysis using a mutant form of FVIII (FVIIIR336I) possessing an altered FIXa cleavage site, showed similar rates of FXase decay (0.12 min(-1)) and confirmed the lack of contribution of proteolysis under these conditions. When the concentration of FIXa was increased 10-fold, the initial rate of decay of FXase containing native FVIIIa increased (0.82 min(-1)) and paralleled the rate of proteolysis of Al subunit. However, the rate of decay of FXase containing the FVIIIaR336I was reduced (0.048 min(-1)) consistent with the elevated concentration of FIXa stabilizing the labile subunit structure of the cofactor. Reconstitution of FVIII with FIXa-cleaved light chain showed that cleavage at the alternate FIXa site (A3 domain) was not inhibitory to FXase. The presence of substrate FX resulted in a 10-fold reduction in the rate of FIXa-catalyzed proteolysis of FVIIIa. These results suggest a model whereby decay of FXase results from both FVIIIa subunit dissociation and FIXa-catalyzed cleavage, dependent upon the relative concentration of reactants, with greater contribution of the former at low values and, in the absence of substrate, greater contribution of the latter at high values.

Related Organizations
Keywords

Protein Conformation, Molecular Sequence Data, Factor VIIa, In Vitro Techniques, Models, Biological, Blood Coagulation Factors, Recombinant Proteins, Factor IXa, Neoplasm Proteins, Cysteine Endopeptidases, Kinetics, Factor X, Mutation, Humans, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    96
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
96
Top 10%
Top 10%
Top 10%