Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

New insights into the tPA-annexin A2 interaction. Is annexin A2 CYS8 the sole requirement for this association?

Authors: Oriol, Roda; M Luz, Valero; Sandra, Peiró; David, Andreu; Francisco X, Real; Pilar, Navarro;

New insights into the tPA-annexin A2 interaction. Is annexin A2 CYS8 the sole requirement for this association?

Abstract

Annexin A2 has been described as an important receptor for tissue-type plasminogen activator in endothelium and other cell types. Interaction between tissue-type plasminogen activator and its cellular receptor is critical for many of the functions of this protease. The annexin A2 motif that mediates tissue plasminogen activator interaction has been assigned to the hexapeptide LCKLSL in the amino-terminal domain of the protein, and it has been proposed that Cys(8) of this sequence is essential for tPA binding. In an attempt to identify other amino acids critical for tPA-annexin A2 interaction, we have analyzed a set of peptides containing several modifications of the original hexapeptide, including glycine scans, alanine scans, d-amino acid scans, conservative mutations, cysteine blocking, and enantiomer and retroenantiomer sequences. Using a non-radioactive competitive binding assay, we have found that all cysteine-containing peptides, independently of their sequence, compete the interaction between tPA and annexin A2. Cysteine-containing peptides also inhibit tPA binding to the surface of cultured human umbilical vein endothelial cells (HUVEC). Mass spectrometry demonstrates that the peptides bind through a disulfide bond to a cysteine residue of annexin A2, the same mechanism that has been suggested for the inhibition mediated by homocysteine. These data call for a revision of the role of the LCKLSL sequence as the sole annexin A2 structural region required to bind tPA and indicate that further studies are necessary to better define the annexin A2-tPA interaction.

Related Organizations
Keywords

Umbilical Veins, Molecular Sequence Data, Glycine, Cell Line, Kinetics, Amino Acid Substitution, Tissue Plasminogen Activator, Humans, Biotinylation, Amino Acid Sequence, Cysteine, Endothelium, Vascular, Oligopeptides, Annexin A2

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%