Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

PIKfyve-ArPIKfyve-Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis.

Authors: Ognian C, Ikonomov; Diego, Sbrissa; Homer, Fenner; Assia, Shisheva;

PIKfyve-ArPIKfyve-Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis.

Abstract

The phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2)) metabolizing enzymes, the kinase PIKfyve and the phosphatase Sac3, constitute a single multiprotein complex organized by the PIKfyve regulator ArPIKfyve and its ability to homodimerize. We previously established that PIKfyve is activated within the triple PIKfyve-ArPIKfyve-Sac3 (PAS) core. These data assign an atypical function for the phosphatase in PtdIns(3,5)P(2) biosynthesis, thus raising the question of whether Sac3 retains its PtdIns(3,5)P(2) hydrolyzing activity within the PAS complex. Herein, we address the issue of Sac3 functionality by a combination of biochemical and morphological assays in triple-transfected COS cells using a battery of truncated or point mutants of the three proteins. We identified the Cpn60_TCP1 domain of PIKfyve as a major determinant for associating the ArPIKfyve-Sac3 subcomplex. Neither Sac3 nor PIKfyve enzymatic activities affected the PAS complex formation or stability. Using the well established formation of aberrant cell vacuoles as a sensitive functional measure of localized PtdIns(3,5)P(2) reduction, we observed a mitigated vacuolar phenotype by kinase-deficient PIKfyve(K1831E) if its ArPIKfyve-Sac3 binding region was deleted, suggesting reduced Sac3 access to, and turnover of PtdIns(3,5)P(2). In contrast, PIKfyve(K1831E), which displays intact ArPIKfyve-Sac3 binding, triggered a more severe vacuolar phenotype if coexpressed with ArPIKfyve(WT)-Sac3(WT) but minimal defects when coexpressed with ArPIKfyve(WT) and phosphatase-deficient Sac3(D488A). These data indicate that Sac3 assembled in the PAS regulatory core complex is an active PtdIns(3,5)P(2) phosphatase. Based on these and other data, presented herein, we propose a model of domain interactions within the PAS core and their role in regulating the enzymatic activities.

Related Organizations
Keywords

Cell Membrane, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Endocytosis, Phosphoric Monoester Hydrolases, Protein Structure, Tertiary, Phosphatidylinositol 3-Kinases, Phosphatidylinositol Phosphates, Multienzyme Complexes, COS Cells, Chlorocebus aethiops, Animals, Homeostasis, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
gold