Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1.
Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1.
TAR DNA-binding protein-43 (TDP-43) proteinopathy has been linked to several neurodegenerative diseases, such as frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis. Phosphorylated and ubiquitinated TDP-43 C-terminal fragments have been found in cytoplasmic inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis patients. However, the factors and pathways that regulate TDP-43 aggregation are still not clear. We found that the C-terminal 15 kDa fragment of TDP-43 is sufficient to induce aggregation but the aggregation phenotype is modified by additional sequences. Aggregation is accompanied by phosphorylation at serine residues 409/410. Mutation of 409/410 to phosphomimetic aspartic acid residues significantly reduces aggregation. Inhibition of either proteasome or autophagy dramatically increases TDP-43 aggregation. Furthermore, TDP-43 aggregates colocalize with markers of autophagy and the adaptor protein p62/SQSTM1. Over-expression of p62/SQSTM1 reduces TDP-43 aggregation in an autophagy and proteasome-dependent manner. These studies suggest that aggregation of TDP-43 C-terminal fragments is regulated by phosphorylation events and both the autophagy and proteasome-mediated degradation pathways.
- Cornell University United States
Proteasome Endopeptidase Complex, Peptide Fragments, DNA-Binding Proteins, Mice, HEK293 Cells, COS Cells, Chlorocebus aethiops, Sequestosome-1 Protein, Autophagy, NIH 3T3 Cells, Animals, Humans, Phosphorylation, Adaptor Proteins, Signal Transducing
Proteasome Endopeptidase Complex, Peptide Fragments, DNA-Binding Proteins, Mice, HEK293 Cells, COS Cells, Chlorocebus aethiops, Sequestosome-1 Protein, Autophagy, NIH 3T3 Cells, Animals, Humans, Phosphorylation, Adaptor Proteins, Signal Transducing
13 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).177 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
