Powered by OpenAIRE graph

Zn²(+) -containing protein S inhibits extrinsic factor X-activating complex independently of tissue factor pathway inhibitor.

Authors: N, Fernandes; L O, Mosnier; L, Tonnu; M J, Heeb;

Zn²(+) -containing protein S inhibits extrinsic factor X-activating complex independently of tissue factor pathway inhibitor.

Abstract

Protein S (PS) has direct anticoagulant activity, independently of activated protein C (APC). The mechanisms underlying this activity remain unclear, because PS preparations differ in activity, giving rise to conflicting results. Some purification procedures result in loss of intramolecular Zn²(+) , which is essential for inhibition of prothrombinase.To investigate the inhibition of extrinsic factor (F)Xase by Zn²(+) -containing PS.Purified component extrinsic FXase assays were used to determine FXa generation in the presence and absence of PS and/or tissue factor pathway inhibitor (TFPI). Binding assays, immunoblots and thrombin generation assays in plasma supported the FXase data.Zn²(+) -containing PS potently inhibited extrinsic FXase in the presence of saturating phospholipids, independently of TFPI, whereas inhibition of extrinsic FXase by Zn²(+) -deficient PS required TFPI. Immunoblots for FXa and functional assays showed that Zn²(+) -containing PS inhibited primarily the quantity of FXa formed by tissue factor (TF)-FVIIa, rather than FXa amidolytic activity. Zn²(+) -containing PS, but not Zn²(+) -deficient PS, bound to TF with high affinity (K(dapp) = 41 nm) and targeted TF function. Binding of PS to FVIIa was negligible, whereas PS showed appreciable binding to FX. Increasing FX concentrations 10-fold reduced PS inhibition five-fold, suggesting that PS inhibition of FXase is FX-dependent. PS also exhibited TFPI-independent and APC-independent anticoagulant activity during TF-initiated thrombin generation in plasma.PS that retains native Zn²(+) also retains anticoagulant functions independently of APC and TFPI. Inhibition of extrinsic FXase by PS at saturating levels of phospholipids depends on PS retention of intramolecular Zn²(+) , interaction with FX, and, particularly, interaction with TF.

Related Organizations
Keywords

Time Factors, Lipoproteins, Anticoagulants, Recombinant Proteins, Protein S, Thromboplastin, Kinetics, Zinc, Factor X, Factor Xa, Humans, Phospholipids, Protein Binding, Protein C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%