Powered by OpenAIRE graph

Golgi apparatus partitioning during cell division.

Authors: Catherine, Rabouille; Eija, Jokitalo;

Golgi apparatus partitioning during cell division.

Abstract

This review discusses the mitotic segregation of the Golgi apparatus. The results from classical biochemical and morphological studies have suggested that in mammalian cells this organelle remains distinct during mitosis, although highly fragmented through the formation of mitotic Golgi clusters of small tubules and vesicles. Shedding of free Golgi-derived vesicles would consume Golgi clusters and disperse this organelle throughout the cytoplasm. Vesicles could be partitioned in a stochastic and passive way between the two daughter cells and act as a template for the reassembly of this key organelle. This model has recently been modified by results obtained using GFP- or HRP-tagged Golgi resident enzymes, live cell imaging and electron microscopy. Results obtained with these techniques show that the mitotic Golgi clusters are stable entities throughout mitosis that partition in a microtubule spindle-dependent fashion. Furthermore, a newer model proposes that at the onset of mitosis, the Golgi apparatus completely loses its identity and is reabsorbed into the endoplasmic reticulum. This suggests that the partitioning of the Golgi apparatus is entirely dependent on the partitioning of the endoplasmic reticulum. We critically discuss both models and summarize what is known about the molecular mechanisms underlying the Golgi disassembly and reassembly during and after mitosis. We will also review how the study of the Golgi apparatus during mitosis in other organisms can answer current questions and perhaps reveal novel mechanisms.

Keywords

Microscopy, Electron, Animals, Golgi Apparatus, Humans, Saccharomyces cerevisiae, COP-Coated Vesicles, Interphase, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%