Lipid-binding role of betaII-spectrin ankyrin-binding domain.
Lipid-binding role of betaII-spectrin ankyrin-binding domain.
It is known that erythroid and non-erythroid spectrins binding of vesicles and monolayers containing PE proved sensitive to inhibition by red blood cell ankyrin. We now show that the bacterially-expressed recombinant peptides representing betaII(brain)-spectrin's ankyrin-binding domain and its truncated mutants showed lipid-binding activity, although only those containing a full-length amino terminal fragment showed high to moderate affinity towards phospholipid mono- and bilayers and a substantial sensitivity of this binding to inhibition by ankyrin. These results are in accordance with our published data on betaI-spectrin's ankyrin-binding domain [Hryniewicz-Jankowska A, et al. Mapping of ankyrin-sensitive, PE/PC mono- and bilayer binding site in erythroid beta-spectrin. Biochem J 2004;382:677-85]. Moreover, we tested also the effect of transient transfection of living cells of several cell-lines with vectors coding for GFP-conjugates including betaII and also betaI full-length ankyrin-binding domain and their truncated fragments on the membrane skeleton organization. The transfection with constructs encoding full-length ankyrin-binding domain of betaII and betaI spectrin resulted in increased aggregation of membrane skeleton and its punctate appearance in contrast to near normal appearance of membrane skeleton of cells transiently transfected with GFP control or construct encoding ankyrin-binding domain truncated at their N-terminal region. Our results therefore indicate the importance of N-terminal region for lipid-binding activity of the beta-spectrin ankyrin-binding domain and its substantial role in maintaining the spectrin-based skeleton distribution.
- University of Wrocław Poland
Ankyrins, Protein Folding, Binding Sites, Circular Dichroism, Green Fluorescent Proteins, Microfilament Proteins, Molecular Sequence Data, Melanoma, Experimental, Cell Line, Membrane Lipids, Mice, Microscopy, Fluorescence, Liposomes, Escherichia coli, Mutagenesis, Site-Directed, Animals, Humans, Carrier Proteins, Algorithms, HeLa Cells
Ankyrins, Protein Folding, Binding Sites, Circular Dichroism, Green Fluorescent Proteins, Microfilament Proteins, Molecular Sequence Data, Melanoma, Experimental, Cell Line, Membrane Lipids, Mice, Microscopy, Fluorescence, Liposomes, Escherichia coli, Mutagenesis, Site-Directed, Animals, Humans, Carrier Proteins, Algorithms, HeLa Cells
10 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2006IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2007IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
