Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Postępy Biochemiiarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

[Molecular pathogenesis of hereditary motor and sensory neuropathy].

Authors: Katarzyna, Kotruchow; Dagmara, Kabzińska; Kamila, Karpińska; Andrzej, Kochański;

[Molecular pathogenesis of hereditary motor and sensory neuropathy].

Abstract

Charcot-Marie-Tooth disease 2 is an inherited axonal motor and sensory neuropathy. It is very heterogenous, both clinically and genetically. Till present, 15 types of CMT2, 14 loci and 13 genes are known to be causative of CMT2. Studying mechanisms of molecular pathogenesis is very important for finding a therapy for patients but the diversity of proteins involved in pathogenesis makes this very difficult. Proteins involved in molecular pathogenesis are e.g. proteins of the mitochondrial outer membrane with opposite functions (mitofusin 2 and GDAP1) responsible for fusion and fission of the mitochondrial network. Mutations also occur in genes encoding tRNA-synthetases, neuronal cytoskeletal protein, cation channel protein and molecular chaperones. This review presents knowledge of CMT2 and possible pathogenetic mechanisms responsible for the disease.

Keywords

Charcot-Marie-Tooth Disease, Mutation, Humans, Nuclear Proteins, Cell Cycle Proteins, Hereditary Sensory and Motor Neuropathy, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold