Important role of Ser443 in different thermal stability of human glutamate dehydrogenase isozymes.
Important role of Ser443 in different thermal stability of human glutamate dehydrogenase isozymes.
Molecular biological studies confirmed that two glutamate dehydrogenase isozymes (hGDH1 and hGDH2) of distinct genetic origin are expressed in human tissues. hGDH1 is heat-stable and expressed widely, whereas hGDH2 is heat-labile and specific for neural and testicular tissues. A selective deficiency of hGDH2 has been reported in patients with spinocerebellar ataxia. We have identified an amino acid residue involved in the different thermal stability of human GDH isozymes. At 45 degrees C (pH 7.0), heat inactivation proceeded faster for hGDH2 (half life=45 min) than for hGDH1 (half-life=310 min) in the absence of allosteric regulators. Both hGDH1 and hGDH2, however, showed much slower heat inactivation processes in the presence of 1 mM ADP or 3 mM L-Leu. Virtually most of the enzyme activity remained up to 100 min at 45 degrees C after treatment with ADP and L-Leu in combination. In contrast to ADP and L-Leu, the thermal stabilities of the hGDH isozymes were not affected by addition of substrates or coenzymes. In human GDH isozymes, the 443 site is Arg in hGDH1 and Ser in hGDH2. Replacement of Ser by Arg at the 443 site by cassette mutagenesis abolished the heat lability of hGDH2 with a similar half-life of hGDH1. The mutagenesis at several other sites (L415M, A456G, and H470R) having differences in amino acid sequence between the two GDH isozymes did not show any change in the thermal stability. These results suggest that the Ser443 residue plays an important role in the different thermal stability of human GDH isozymes.
- University of Ulsan Korea (Republic of)
Isoenzymes, Hot Temperature, Glutamate Dehydrogenase, Enzyme Stability, Molecular Sequence Data, Mutation, Serine, Humans
Isoenzymes, Hot Temperature, Glutamate Dehydrogenase, Enzyme Stability, Molecular Sequence Data, Mutation, Serine, Humans
15 Research products, page 1 of 2
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
