Powered by OpenAIRE graph

Expression of allograft inflammatory factor-1 in T lymphocytes: a role in T-lymphocyte activation and proliferative arteriopathies.

Authors: Sheri E, Kelemen; Michael V, Autieri;

Expression of allograft inflammatory factor-1 in T lymphocytes: a role in T-lymphocyte activation and proliferative arteriopathies.

Abstract

Allograft inflammatory factor (AIF)-1 is a cytoplasmic, calcium-binding protein whose expression in transplanted human hearts correlates with rejection and development of coronary artery vasculopathy (CAV). AIF-1 is constitutively expressed in monocytes/macrophages, but its expression in human lymphocytes has not been described. After immunohistochemical analysis of human coronary arteries with CAV, we identified AIF-1 expression in CD3-positive lymphocytes. AIF-1 was differentially expressed in peripheral blood mononuclear cells and in the T-lymphoblastoid MOLT-4 cell line exposed to various cytokines, suggesting a role for AIF-1 in T-lymphocyte activation. To determine AIF-1 function, MOLT-4 cells were stably transduced by AIF-1 retrovirus. Overexpression of AIF-1 in these cells led to a 238% increase in cell number compared to empty vector controls. AIF-1 polymerized nonmuscle actin and MOLT-4 cells overexpressing AIF-1 migrated 95% more rapidly than empty vector controls. Primary human vascular smooth muscle cells cultured in conditioned media from AIF-1-transduced MOLT-4 cells proliferated 99% more rapidly than vascular smooth muscle cells cultured in conditioned media from empty vector-transduced MOLT-4 cells. These data indicate that AIF-1 is expressed in activated T lymphocytes, that its expression enhances activation of lymphocytes, and that AIF-1 expression in activated lymphocytes may have important ramifications for activation of adjacent arterial vascular smooth muscle cells and development of CAV.

Related Organizations
Keywords

Arteriosclerosis, Macrophages, Myocardium, T-Lymphocytes, Calcium-Binding Proteins, Microfilament Proteins, Lymphocyte Activation, Coronary Vessels, Actins, Muscle, Smooth, Vascular, DNA-Binding Proteins, Retroviridae, Cell Movement, Culture Media, Conditioned, Cytokines, Humans, Cells, Cultured, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%