[Isolation and cloning of genes related to growth inhibition of human glioma BT325 by EGF].
[Isolation and cloning of genes related to growth inhibition of human glioma BT325 by EGF].
To isolate and clone the differentially expressed genes induced by epithelial growth factor (EGF) with inhibiting dosage in cultured glioma BT325 cells and understand the molecular mechanism that inhibits glioma cells growth.Using differential display reversed transcription polymerase chain reaction (DDRT-PCR) method to analyze the differentially expressed cDNA in BT325 cells induced by EGF with inhibiting dosage. After sequencing and homology research, the differentially expressed cDNA fragments were further confirmed by Dot blot analysis and one of them by Northern blot.Up-regulated genes cDNA fragments were isolated in growth inhibited BT325 cells. It was found that five cDNA fragments were highly homologous to the known human genes, while one was a fragment of a novel genes. Among these genes, one has coding sequence homology with transaldolase (TAL), which has been proved to be associated with apoptosis in recently research.High-dose EGF could change the expression of many genes in BT325 cells. EGF can inhibit the growth of BT325 cell growth, which may be resulted from its potential role in promoting TAL gene expression and thus inducing cell apoptosis.
- Institute of Basic Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences / Peking Union Medical College. China (People's Republic of)
- State Key Laboratory of Medical Molecular Biology China (People's Republic of)
Base Sequence, Epidermal Growth Factor, Brain Neoplasms, Molecular Sequence Data, Glioma, Sequence Analysis, DNA, Gene Expression Regulation, Neoplastic, Tumor Cells, Cultured, Humans, Genes, Tumor Suppressor, Cloning, Molecular, Cell Division
Base Sequence, Epidermal Growth Factor, Brain Neoplasms, Molecular Sequence Data, Glioma, Sequence Analysis, DNA, Gene Expression Regulation, Neoplastic, Tumor Cells, Cultured, Humans, Genes, Tumor Suppressor, Cloning, Molecular, Cell Division
13 Research products, page 1 of 2
- 2021IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2004IsAmongTopNSimilarDocuments
- 2001IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2000IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2002IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
