Powered by OpenAIRE graph

Requirement for matrix metalloproteinase-9 (gelatinase B) expression in metastasis by murine prostate carcinoma.

Authors: G, Sehgal; J, Hua; E J, Bernhard; I, Sehgal; T C, Thompson; R J, Muschel;

Requirement for matrix metalloproteinase-9 (gelatinase B) expression in metastasis by murine prostate carcinoma.

Abstract

Although a number of effective therapies are available for localized prostate cancer, metastatic prostate cancer is difficult to treat and impossible to cure. Identification of the gene products that enable a prostatic carcinoma cell to metastasize should facilitate an understanding of the processes leading to metastasis. To characterize the contribution of matrix metalloproteinase-9 (MMP-9, gelatinase B or the 92-kd type IV gelatinase/collagenase) to the development of metastasis in prostate cancer, we reduced MMP-9 expression in metastatic murine prostatic carcinoma cells using a ribozyme. The ribozyme transfected cells had lower basal levels of MMP-9 as well as decreased levels after stimulation by transforming growth factor-beta or phorbol 12-myristate 13-acetate when compared with the parental cells or with control transfectants. The cells with down-regulated MMP-9 were unable to form lung colonies in the experimental metastasis assay, whereas the controls and parental cells readily formed metastases. All cell types readily formed tumors after injection and down-regulation of MMP-9 did not adversely affect the rate of tumor growth. Thus, MMP-9 expression is required for hematogenous metastasis in a murine prostate model system raising the possibility that it may play an equivalent role in human prostate cancer.

Related Organizations
Keywords

Male, Lung Neoplasms, Carcinoma, Mice, Nude, Prostatic Neoplasms, Transfection, Mice, Matrix Metalloproteinase 9, Gelatinases, Transforming Growth Factor beta, Animals, Tetradecanoylphorbol Acetate, Female, RNA, Catalytic, Collagenases, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 10%
Related to Research communities
Cancer Research