Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease.

Authors: Brent L, Kelly; Robert, Vassar; Adriana, Ferreira;

Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease.

Abstract

Synaptic dysfunction is one of the earliest events in the pathogenesis of Alzheimer disease (AD). However, the molecular mechanisms underlying synaptic defects in AD are largely unknown. We report here that beta-amyloid (Abeta), the main component of senile plaques, induced a significant decrease in dynamin 1, a protein that is essential for synaptic vesicle recycling and, hence, for memory formation and information processing. The Abeta-induced dynamin 1 decrease occurred in the absence of overt synaptic loss and was also observed in the Tg2576 mouse model of AD. In addition, our results provided evidence that the Abeta-induced decrease in dynamin 1 was likely the result of a calpain-mediated cleavage of dynamin 1 protein and possibly the down-regulation of dynamin 1 gene expression. These data suggest a mechanism to explain the early cognitive loss without a major decline in synapse number observed in AD and propose a novel therapeutic target for AD intervention.

Related Organizations
Keywords

Neurons, Amyloid beta-Peptides, Calpain, Mice, Transgenic, Hippocampus, Rats, Disease Models, Animal, Mice, Cognition, Alzheimer Disease, Animals, Cells, Cultured, Dynamin I

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    123
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
123
Top 10%
Top 10%
Top 1%
gold