Powered by OpenAIRE graph

Conserved sequences in the beta subunit of archaeal and eukaryal translation initiation factor 2 (eIF2), absent from eIF5, mediate interaction with eIF2gamma.

Authors: G M, Thompson; E, Pacheco; E O, Melo; B A, Castilho;

Conserved sequences in the beta subunit of archaeal and eukaryal translation initiation factor 2 (eIF2), absent from eIF5, mediate interaction with eIF2gamma.

Abstract

The eukaryotic translation initiation factor 2 (eIF2) binds the methionyl-initiator tRNA in a GTP-dependent mode. This complex associates with the 40 S ribosomal particle, which then, with the aid of other factors, binds to the 5' end of the mRNA and migrates to the first AUG codon, where eIF5 promotes GTP hydrolysis, followed by the formation of the 80 S ribosome. Here we provide a comparative sequence analysis of the beta subunit of eIF2 and its archaeal counterpart (aIF2beta). aIF2beta differs from eIF2beta in not possessing an N-terminal extension implicated in binding RNA, eIF5 and eIF2B. The remaining sequences are highly conserved, and are shared with eIF5. Previously isolated mutations in the yeast eIF2beta, which allow initiation of translation at UUG codons due to the uncovering of an intrinsic GTPase activity in eIF2, involve residues that are conserved in aIF2beta, but not in eIF5. We show that the sequence of eIF2beta homologous to aIF2beta is sufficient for binding eIF2gamma, the only subunit with which it interacts, and comprises, at the most, 78 residues. eIF5 does not interact with eIF2gamma, despite its similarity with eIF2beta, probably because of a gap in homology in this region. These observations have implications for the evolution of the mechanism of translation initiation.

Related Organizations
Keywords

Binding Sites, Archaeal Proteins, Eukaryotic Initiation Factor-2, Molecular Sequence Data, Saccharomyces cerevisiae, Models, Biological, Evolution, Molecular, Fungal Proteins, Eukaryotic Cells, Peptide Initiation Factors, Protein Biosynthesis, Two-Hybrid System Techniques, Amino Acid Sequence, Eukaryotic Initiation Factor-5, Sequence Alignment, Conserved Sequence, Protein Binding, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%