Powered by OpenAIRE graph

Partners and pathwaysrepairing a double-strand break.

Authors: J E, Haber;

Partners and pathwaysrepairing a double-strand break.

Abstract

Double-strand chromosome breaks can arise in a number of ways, by ionizing radiation, by spontaneous chromosome breaks during DNA replication, or by the programmed action of endonucleases, such as in meiosis. Broken chromosomes can be repaired either by one of several homologous recombination mechanisms, or by a number of nonhomologous repair processes. Many of these pathways compete actively for the repair of a double-strand break. Which of these repair pathways is used appears to be regulated developmentally, genetically and during the cell cycle.

Related Organizations
Keywords

DNA Replication, Recombination, Genetic, DNA Repair, DNA, Single-Stranded, Mitosis, DNA, Chromatids, Meiosis, Gene Expression Regulation, Animals, Alleles, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    463
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
463
Top 1%
Top 1%
Top 0.1%