Powered by OpenAIRE graph

[Hint and luck for identification of a gene for Fukuyama muscular dystrophy, fukutin].

Authors: Tatsushi, Toda;

[Hint and luck for identification of a gene for Fukuyama muscular dystrophy, fukutin].

Abstract

Fukuyama type congenital muscular dystrophy (FCMD), the second most common form of childhood muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy, associated with brain anomalies due to neuronal overmigration. By taking advantages of the presence of a consanguineous patient with both FCMD and xeroderma pigmentosum group A, we performed homozygosity mapping using consanguineous FCMD families mainly, and localized the FCMD locus to chromosome 9q31-33. Subsequently, we have identified the gene responsible for FCMD on 9q31, which encodes a novel 461-amino-acid protein termed fukutin. Most FCMD-bearing chromosomes are derived from a single ancestral founder (87%), and a 3kb-retrotransposal insertion was found to be a founder mutation. Two independent point mutations in this gene have also been detected on chromosomes carrying the non-founder haplotype. FCMD is the first human disease to be caused by an ancient retrotransposal integration. We further identified the gene for muscle-eye-brain (MEB) disease, which encodes POMGnT1. Recent studies have revealed that posttranslational modification of alpha-dystroglycan is associated with congenital muscular dystrophy with brain malformations. Since hypoglycosylation of alpha-dystroglycan is common amongst several other disorders, a new clinical entity called alpha-dystroglycanopathy is proposed. However, only POMGnT1 (MEB) and POMT1 (WWS) are shown to have a definite enzymatic activity, and no enzymatic activity has been detected in fukutin. We show positive interactions between fukutin and POMGnT1. Fukutin may form a protein complex with POMGnT1 and modulate POMGnT1's enzymatic activity. Through cDNA microarray, we also show aberrant neuromuscular junction formation and delayed muscle fiber maturation in alpha-dystroglycanopathies, suggesting a new pathomechanism.

Related Organizations
Keywords

Humans, Membrane Proteins, Muscular Dystrophies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average