Overproduction of voltage-dependent Na+ channels in the developing brain of genetically seizure-susceptible E1 mice.
Overproduction of voltage-dependent Na+ channels in the developing brain of genetically seizure-susceptible E1 mice.
We used E1 mice, a ddY mouse-derived, autosomal mutant strain and a model of hereditary sensory-precipitated epilepsy, to test the hypothesis that epileptic susceptibility may be associated with the activity of voltage-dependent ion channels. We examined the saxitoxin binding capacity of the receptor site 1 of the Na+ channel alpha-subunit, the expression activity of the Na+ channel mRNA, the veratridine-induced 22Na+ influx in the brain synaptosomes, and the regional distribution of Na+ channels in the brain. Compared with control ddY mice, in E1 mice which have not experienced seizures, the number of Na+ channels in the brain synaptosomes increased by approximately 20% starting at the fourth postnatal week through the adult stage as determined by [3H]saxitoxin binding assay. Northern blot hybridization analysis showed excess expression of Na+ channel mRNA (by 30-40%) coincidentally with Na+ channel increases. Regional analysis using the saxitoxin binding assay demonstrated approximately 1.3-fold denser distribution of Na+ channels in the cortex and cerebellum but not the hippocampus and midbrain including thalamus of E1 mice compared to ddY mice. Scatchard plot analysis for saxitoxin binding in the cortex of E1 mouse brains revealed higher maximum binding capacity (Bmax) values (ddY, 4.43 +/- 0.28 pmol/mg protein; E1, 5.43 +/- 0.25 pmol/mg protein) without a change in Kd (ddY, 1.05 +/- 0.03 nM; E1, 1.03 +/- 0.01 nM). Lastly, veratridine-evoked 22Na+ influx, sensitive to tetrodotoxin, was increased approximately 45% in the cortical synaptosomes in six-week-old E1 mice.(ABSTRACT TRUNCATED AT 250 WORDS)
Cerebral Cortex, Aging, Veratridine, Sodium, Synaptic Membranes, Brain, Mice, Inbred Strains, Tetrodotoxin, Blotting, Northern, Sodium Channels, Mice, Mice, Neurologic Mutants, Organ Specificity, Seizures, Animals, RNA, RNA, Messenger, Poly A, Saxitoxin
Cerebral Cortex, Aging, Veratridine, Sodium, Synaptic Membranes, Brain, Mice, Inbred Strains, Tetrodotoxin, Blotting, Northern, Sodium Channels, Mice, Mice, Neurologic Mutants, Organ Specificity, Seizures, Animals, RNA, RNA, Messenger, Poly A, Saxitoxin
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2019IsRelatedTo
- 2019IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).40 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
