Powered by OpenAIRE graph

[Glutathione S-transferases genetic polymorphisms and human diseases: overview of epidemiological studies].

Authors: M, Habdous; G, Siest; B, Herbeth; M, Vincent-Viry; S, Visvikis;

[Glutathione S-transferases genetic polymorphisms and human diseases: overview of epidemiological studies].

Abstract

Glutathione S-transferases (GST), xenobiotic-metabolising enzymes, are involved in the metabolic detoxification of various environmental carcinogens. Particular genetic polymorphisms of these enzymes have been shown to influence individual susceptibility against various pathologies including cancer, cardiovascular and respiratory diseases. The results from the meta-analysis indicate that GSTM1*0 null allele was associated with enhanced risk for lung (OR (95% IC) = 1,17 (1,07-1,27)), bladder (OR = 1,44 (1,23-1,68) and larynx cancer (OR = 1,42 (1,10-1,84)). GSTT1 null genotype was associated with increased astrocytomas (OR = 2,36 (1,41-3,94)) and meningiomas (OR = 3,57 (1,82-6,92)) cancer risk. GSTP1 allelic polymorphism influence the development of bladder cancer in smokers (OR = 2,40 (1,12-4,95)) and occupational asthma (OR = 3,5 (2,7-4,6)). Finally, GSTM1*0 null allele and GSTT1*1 functional allele were associated with increased risk for coronary heart diseases in smokers (OR = 2,30 (1,40-9,00)) and OR = 2,5 (1,30-4,80), respectively). The GSTT1*1 functional allele was also significantly associated with increased risk of lower extremity arterial disease (OR = 3,60 (1,40-9,00). These epidemiological data suggest that genetic GST polymorphisms influence the individual susceptibility to these diseases. Contrary to cardiovascular disease, no evidence of interaction between GST genotype and smoking status was found in lung cancer but it has not been studied in other cancers. Consequently, other works are necessary to study the potential interaction between GST genotype and environmental carcinogens including tobacco smoke extract.

Related Organizations
Keywords

Polymorphism, Genetic, Cardiovascular Diseases, Neoplasms, Respiratory Tract Diseases, Humans, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Average
Top 10%
Top 10%