Powered by OpenAIRE graph

Human tumor suppressor ARF impedes S-phase progression independent of p53.

Authors: Wendell G, Yarbrough; Mika, Bessho; Adam, Zanation; John E, Bisi; Yue, Xiong;

Human tumor suppressor ARF impedes S-phase progression independent of p53.

Abstract

Using alternative reading frames, the human ARF-INK4a locus encodes two unrelated proteins that both function in tumor suppression. p16(INK4a) maintains the retinoblastoma protein in its growth-suppressive state through inhibition of cyclin D-dependent kinase activity, whereas ARF binds with MDM2 and stabilizes p53. The majority of the activity of ARF to date is ascribed to its ability to activate p53, resulting in a G(1) cell cycle arrest or apoptosis. We show here that ARF colocalizes with DNA replication protein A (RPA32) and that overexpression of ARF reduces the rate of DNA synthesis resulting in accumulation of an S-phase cell population. Impediment of DNA synthesis by ARF can occur and becomes more evident in the absence of p53. Hence, the biological consequence of ARF induction varies dependent on cellular p53 status, inducing predominantly a G(1) arrest or apoptosis in p53-positive cells or causing S-phase retardation when p53 function is comprised.

Keywords

Osteosarcoma, Tumor Suppressor Proteins, Bone Neoplasms, DNA, Neoplasm, S Phase, DNA-Binding Proteins, Replication Protein A, Tumor Cells, Cultured, Humans, Tumor Suppressor Protein p53, Cell Division, Cyclin-Dependent Kinase Inhibitor p16

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Average
Top 10%
Top 10%