<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Caspase-3 cleaves Apaf-1 into an approximately 30 kDa fragment that associates with an inappropriately oligomerized and biologically inactive approximately 1.4 MDa apoptosome complex.

Caspase-3 cleaves Apaf-1 into an approximately 30 kDa fragment that associates with an inappropriately oligomerized and biologically inactive approximately 1.4 MDa apoptosome complex.
Cytochrome c and dATP/ATP induce oligomerization of Apaf-1 into two distinct apoptosome complexes: an approximately 700 kDa complex, which recruits and activates caspases-9, -3 and -7, and an approximately 1.4 MDa complex, which recruits and processes caspase-9, but does not efficiently activate effector caspases. While searching for potential inhibitors of the approximately 1.4 MDa apoptosome complex, we observed an approximately 30 kDa Apaf-1 immunoreactive fragment that was associated exclusively with the inactive complex. We subsequently determined that caspase-3 cleaved Apaf-1 within its CED-4 domain (SVTD(271) downward arrowS) in both dATP-activated lysates and apoptotic cells to form a prominent approximately 30 kDa (p30) N-terminal fragment. Purified recombinant Apaf-1 p30 fragment weakly inhibited dATP-dependent activation of caspase-3 in vitro. However, more importantly, prevention of endogenous formation of the p30 fragment did not stimulate latent effector caspase processing activity in the large complex. Similarly, the possibility that XIAP, an inhibitor of apoptosis protein (IAP), was responsible for the inactivity of the approximately 1.4 MDa complex was excluded as immunodepletion of this caspase inhibitor failed to relieve the inhibition. However, selective proteolytic digestion of the approximately 1.4 MDa and approximately 700 kDa complexes showed that Apaf-1 was present in conformationally distinct forms in these two complexes. Therefore, the inability of the approximately 1.4 MDa apoptosome complex to process effector caspases most likely results from inappropriately folded or oligomerized Apaf-1.
- Medical Research Council United Kingdom
- University of Leicester United Kingdom
- MRC Toxicology Unit United Kingdom
Caspase 7, Caspase 3, Macromolecular Substances, Protein Conformation, Proteins, Apoptosis, X-Linked Inhibitor of Apoptosis Protein, Antibodies, Recombinant Proteins, Cell Line, Molecular Weight, Apoptotic Protease-Activating Factor 1, Deoxyadenine Nucleotides, Caspases, Humans, Amino Acid Sequence
Caspase 7, Caspase 3, Macromolecular Substances, Protein Conformation, Proteins, Apoptosis, X-Linked Inhibitor of Apoptosis Protein, Antibodies, Recombinant Proteins, Cell Line, Molecular Weight, Apoptotic Protease-Activating Factor 1, Deoxyadenine Nucleotides, Caspases, Humans, Amino Acid Sequence
3 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%