Powered by OpenAIRE graph

[Epigenetic heredity (deoxyribonucleic acid methylation): Clinical context in neurodegenerative disorders and ATXN2 gene].

Authors: José Miguel, Laffita-Mesa; Peter, Bauer;

[Epigenetic heredity (deoxyribonucleic acid methylation): Clinical context in neurodegenerative disorders and ATXN2 gene].

Abstract

Epigenetics is the group of changes in the phenotype which are related with the process independently of the primary DNA sequence. These changes are intimately related with changes in the gene expression level and its profile across the body. These are mediated by histone tail modifications, DNA methylation, micro-RNAs, with chromatin remodeling remaining as the foundation of epigenetic changes. DNA methylation involves the covalent addition of methyl group to cytosine of the DNA, which is mediated by methyltransferases enzymes. DNA methylation regulates gene expression by repressing transcription, while de-methylation activates gene transcription. Several human diseases are related with the epigenetic process: cancer, Alzheimer disease, stroke, Parkinson disease, and diabetes. We present here the basis of epigenetic inheritance and show the pathogenic mechanisms relating epigenetics in human diseases, specifically with regard to neurodegeneration. We discuss current concepts aimed at understanding the contribution of epigenetics to human neurodegenerative diseases. We also discuss recent findings obtained in our and other centers regarding the ATXN2 gene that causes spinocerebellar ataxia 2 and amyotrophic lateral sclerosis. Epigenetics play a pivotal role in the pathogenesis of human diseases and in several neurodegenerative disorders, and this knowledge will illuminate the pathways in the diagnostic and therapeutic field, which ultimately will be translated into the clinic context of neurodegenerative diseases.

Keywords

Genetic Markers, Ataxins, Amyotrophic Lateral Sclerosis, Humans, Spinocerebellar Ataxias, Nerve Tissue Proteins, Neurodegenerative Diseases, DNA Methylation, Epigenesis, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Related to Research communities
Cancer Research