Powered by OpenAIRE graph

Comparison of human immunodeficiency virus type 1 Pr55(Gag) and Pr160(Gag-pol) processing intermediates that accumulate in primary and transformed cells treated with peptidic and nonpeptidic protease inhibitors.

Authors: R R, Speck; C, Flexner; C J, Tian; X F, Yu;

Comparison of human immunodeficiency virus type 1 Pr55(Gag) and Pr160(Gag-pol) processing intermediates that accumulate in primary and transformed cells treated with peptidic and nonpeptidic protease inhibitors.

Abstract

Human immunodeficiency virus type 1 (HIV-1) produces two polyproteins, Pr55(Gag) and Pr160(Gag-Pol), that are cleaved into mature functional subunits by the virally encoded protease. Drugs that inhibit this protease are an important part of anti-HIV therapy. We studied the ordered accumulation of Gag and Gag-Pol processing intermediates by variably blocking the protease with HIV-1 protease inhibitors (PIs). Variable protease inhibition caused accumulation of a complex pattern of processing intermediates, which was the same after incubating HIV-1-infected cells with increasing concentrations of either one of the peptidomimetic inhibitors indinavir, saquinavir (SQV), ritonavir (RTV), nelfinavir, and SC-52151 or one of the nonpeptidomimetic inhibitors DMP450, DMP323, PNU-140135, and PNU-109112 for 3 days. The patterns of Gag and Gag-Pol processing intermediate accumulation were nearly identical when the following were compared: cell- versus virion-associated proteins, HIV-1-infected transformed cell lines versus primary human peripheral blood mononuclear cells (PBMCs) and HIV-1(MN) versus HIV-1(IIIB) virus strains. RTV was a more potent inhibitor of p24 production in PBMCs than SQV by approximately 7-fold, whereas SQV was a more potent inhibitor in transformed cells than RTV by approximately 30-fold. Although the antiretroviral potency of HIV-1 PIs may change as a function of cell type, the polyprotein intermediates that accumulate with increasing drug concentrations are the same. These results support sequential processing of Gag and Gag-Pol polyproteins by the HIV-1 protease and may have important implications for understanding common cross-resistance pathways.

Related Organizations
Keywords

Gene Products, gag, HIV Protease Inhibitors, Cell Transformation, Viral, gag Gene Products, Human Immunodeficiency Virus, pol Gene Products, Human Immunodeficiency Virus, HIV-1, Leukocytes, Mononuclear, Humans, Protein Precursors, Protein Processing, Post-Translational, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Average
Average