Powered by OpenAIRE graph

Replacement of Y730 and Y731 in the alpha2 subunit of Escherichia coli ribonucleotide reductase with 3-aminotyrosine using an evolved suppressor tRNA/tRNA-synthetase pair.

Authors: Mohammad R, Seyedsayamdost; JoAnne, Stubbe;

Replacement of Y730 and Y731 in the alpha2 subunit of Escherichia coli ribonucleotide reductase with 3-aminotyrosine using an evolved suppressor tRNA/tRNA-synthetase pair.

Abstract

Since the discovery of the essential tyrosyl radical (Y*) in E. coli ribonucleotide reductase (RNR), a number of enzymes involved in primary metabolism have been found that use transient or stable tyrosyl (Y) or tryptophanyl (W) radicals in catalysis. These enzymes engage in a myriad of charge transfer reactions that occur with exquisite control and specificity. The unavailability of natural amino acids that can perturb the reduction potential and/or protonation states of redox-active Y or W residues has limited the usefulness of site-directed mutagenesis methods to probe the attendant mechanism of charge transport at these residues. However, recent technologies designed to site-specifically incorporate unnatural amino acids into proteins have now made viable the study of these mechanisms. The class Ia RNR from E. coli serves as a paradigm for enzymes that use amino acid radicals in catalysis. It catalyzes the conversion of nucleotides to deoxynucleotides and utilizes both stable and transient protein radicals. This reaction requires radical transfer from a stable tyrosyl radical (Y(122)*) in the beta subunit to an active-site cysteine (C(439)) in the alpha subunit, where nucleotide reduction occurs. The distance between the sites is proposed to be >35 A. A pathway between these sites has been proposed in which transient aromatic amino acid radicals mediate radical transport. To examine the pathway for radical propagation as well as requirements for coupled electron and proton transfers, a suppressor tRNA/aminoacyl-tRNA synthetase (RS) pair has been evolved that allows for site-specific incorporation of 3-aminotyrosine (NH(2)Y). NH(2)Y was chosen because it is structurally similar to Y with a similar phenolic pK(a). However, at pH 7, it is more easily oxidized than Y by 190 mV (approximately 4.4 kcal/mol), thus allowing it to act as a radical trap. Here we present the detailed procedures involved in evolving an NH(2)Y-specific RS, assessing its efficiency in NH(2)Y insertion, generating RNR mutants with NH(2)Y at selected sites, and determining the spectroscopic properties of NH(2)Y* and the kinetics of its formation.

Related Organizations
Keywords

Escherichia coli Proteins, RNA, Transfer, Tyr, Amino Acid Substitution, Tyrosine-tRNA Ligase, Catalytic Domain, Ribonucleotide Reductases, Biocatalysis, Escherichia coli, Tyrosine, Mutant Proteins, Amino Acid Sequence, Directed Molecular Evolution, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average