Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Investigative Ophtha...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

A role for the Tubby-like protein 1 in rhodopsin transport.

Authors: S A, Hagstrom; M, Adamian; M, Scimeca; B S, Pawlyk; G, Yue; T, Li;

A role for the Tubby-like protein 1 in rhodopsin transport.

Abstract

To test the hypothesis that a lack of Tubby-like protein 1 (TULP1) function causes aberrant transport of nascent rhodopsin and to examine the functional relationship between the homologous proteins TULP1 and Tubby by studying mice carrying combined mutations.Subcellular localization of TULP1 and rhodopsin in photoreceptors was determined by immunofluorescence and by postembedding immunoelectron microscopy. Mice carrying different tulp1/tubby allele combinations were examined by histology, electroretinograms (ERGs), and immunofluorescence microscopy.TULP1 is distributed throughout the photoreceptor cytoplasm but is excluded from the outer segments and the nuclei. In the tulp1-/- mice, ectopic accumulation of rhodopsin occurs at an early age. Both the vesicular profiles in the interphotoreceptor space and the inner segment plasma membranes are immunoreactive for rhodopsin. Mice doubly homozygous for null mutations in the tulp1 and tubby genes initially develop photoreceptors and express a battery of photoreceptor markers at age 14 days. Thereafter their photoreceptors undergo a fulminant degeneration that reaches completion by postnatal day 17. The disease phenotype in the double homozygote is much more severe than either single homozygote. Double heterozygotes are phenotypically normal.A lack of TULP1 function results in misrouting of nascent rhodopsin. TULP1 may be a component of the cellular machinery that targets nascent rhodopsin to the outer segments. Comparison of disease phenotypes in the single and double mutants suggests that TULP1 and Tubby are not functionally interchangeable in photoreceptors nor do they form an obligate functional complex.

Related Organizations
Keywords

Mice, Knockout, Rhodopsin, Cell Membrane, Biological Transport, Mice, Inbred C57BL, Mice, Phenotype, Microscopy, Fluorescence, Electroretinography, Animals, Eye Proteins, Fluorescent Antibody Technique, Indirect, Microscopy, Immunoelectron, Photoreceptor Cells, Vertebrate

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%
gold