Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

Identification of Alix-type and Non-Alix-type ALG-2-binding sites in human phospholipid scramblase 3: differential binding to an alternatively spliced isoform and amino acid-substituted mutants.

Authors: Hideki, Shibata; Hironori, Suzuki; Takeshi, Kakiuchi; Tatsutoshi, Inuzuka; Haruna, Yoshida; Takako, Mizuno; Masatoshi, Maki;

Identification of Alix-type and Non-Alix-type ALG-2-binding sites in human phospholipid scramblase 3: differential binding to an alternatively spliced isoform and amino acid-substituted mutants.

Abstract

ALG-2, a prototypic member of the penta-EF-hand protein family, interacts with Alix at its C-terminal Pro-rich region containing four tandem PXY repeats. Human phospholipid scramblase 3 (PLSCR3) has a similar sequence (ABS-1) in its N-terminal region. In the present study, we found that ALG-2 interacts with PLSCR3 expressed in HEK293 cells in a Ca(2+)-dependent manner by co-immunoprecipitation, pulldown with glutathione S-transferase (GST) fused ALG-2 and an overlay assay using biotin-labeled ALG-2. The GST fusion protein of an alternatively spliced isoform of ALG-2, GST-ALG-2(DeltaGF122), pulled down green fluorescent protein (GFP)-fused PLSCR3 but not GFP Alix. Deletion of a region containing ABS-1 was not sufficient to abrogate the binding. A second ALG-2-binding site (ABS-2) was essential for interaction with ALG-2(DeltaGF122). Real-time interaction analyses with a surface plasmon resonance biosensor using synthetic oligopeptides and recombinant proteins corroborated direct Ca(2+)-dependent binding of ABS-1 to ALG-2 and that of ABS-2 to ALG-2 as well as to ALG-2(DeltaGF122). The sequence of ABS-2 contains multiple prolines and two phenylalanines, among which Phe(49) was found to be critical, because its substitution with Ala or Tyr caused a loss of binding ability by pulldown assays using oligopeptide-immobilized beads. ALG-2-interacting proteins were classified into two groups based on binding ability to ALG-2(DeltaGF122): (i) isoform-non-interactive (ABS-1) types, including Alix, annexin A7, annexin A11, and TSG101 and (ii) isoform-interactive (ABS-2) types including PLSCR3, PLSCR4 and Sec31A. GST-pulldown assays using single amino acid-substituted ALG-2 mutants revealed differences in binding specificities between the two groups, suggesting structural flexibility in ALG-2-ligand complex formation.

Keywords

Binding Sites, Endosomal Sorting Complexes Required for Transport, Annexins, Recombinant Fusion Proteins, Calcium-Binding Proteins, Vesicular Transport Proteins, Cell Cycle Proteins, Cell Line, DNA-Binding Proteins, Alternative Splicing, Amino Acid Substitution, Protein Isoforms, Annexin A7, Phospholipid Transfer Proteins, Apoptosis Regulatory Proteins, Carrier Proteins, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Average
Top 10%
Top 10%