Powered by OpenAIRE graph

ADP ribosylation factors 1 and 4 and group VIA phospholipase A₂ regulate morphology and intraorganellar traffic in the endoplasmic reticulum-Golgi intermediate compartment.

Authors: Houchaima, Ben-Tekaya; Richard A, Kahn; Hans-Peter, Hauri;

ADP ribosylation factors 1 and 4 and group VIA phospholipase A₂ regulate morphology and intraorganellar traffic in the endoplasmic reticulum-Golgi intermediate compartment.

Abstract

Organelle morphology of the endomembrane system is critical for optimal organelle function. ADP ribosylation factors (Arfs), a family of small GTPases, are required for maintaining the structure of the Golgi and endosomes. What determines the discontinuous nature of the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) as tubulovesicular clusters is unknown. In search of morphological determinants for the ERGIC, we found that a double knockdown of Arf1+Arf4 induced dynamic ERGIC tubules that connect ERGIC clusters, indicating that the tubules mediated lateral intraERGIC traffic. Tubule formation was inhibited by an antagonist of group VI calcium-independent phospholipase A₂ (PLA2G6) and by silencing the A isoform of PLA2G6 (PLA2G6-A). Arf1+Arf4 depletion altered the expression of PLA2G6-A splice variants and relocalized PLA2G6-A from the cytosol to ERGIC clusters and tubules, suggesting that the enzyme became locally active. We show that changes in Arf1 can modulate the activity of PLA2G6-A. We propose that a concerted action of Arf1, Arf4, and PLA2G6-A controls the architecture of the ERGIC in a way that is predicted to impact the rate and possibly the destination of cargos. Our findings have identified key components in the molecular mechanism underlying the regulation of tubules in the ERGIC and uncover tubular carriers as tightly controlled machinery.

Related Organizations
Keywords

ADP-Ribosylation Factors, Immunoblotting, Vesicular Transport Proteins, Golgi Apparatus, Endoplasmic Reticulum, Group VI Phospholipases A2, Microscopy, Fluorescence, Gene Knockdown Techniques, Humans, Immunoprecipitation, ADP-Ribosylation Factor 1, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%