Powered by OpenAIRE graph

[Protective effect of Tongqiao Huoxue Decoction containing cerebrospinal fluid on OGD/R-damaged HT22 cells via regulation of ASK1/MKK4/JNK signaling pathway].

Authors: Mei-Ling, Yuan; Yun, Zhang; Guang-Yun, Wang; Qian, Wu; Yan, Wang; Ning, Wang;

[Protective effect of Tongqiao Huoxue Decoction containing cerebrospinal fluid on OGD/R-damaged HT22 cells via regulation of ASK1/MKK4/JNK signaling pathway].

Abstract

To investigate the protective effect of Tongqiao Huoxue Decoction containing cerebrospinal fluid(TQHXD-CSF) on HT22 cells damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) and whether the mechanism is related to the regulation of ASK1/MKK4/JNK signaling pathway. HT22 cells were subjected to OGD/R to simulate cerebral ischemia-reperfusion injury(CIRI). Then the cells were randomly divided into five groups: blank cerebrospinal fluid(control group), OGD/R group, TQHXD-CSF group, Z-VAD-FMK group(20 μmol·L~(-1)) and TQHXD-CSF+Z-VAD-FMK group. Except the control group, cells in the other groups were reoxygenated for 12 h after 6 h of oxygen and glucose deprivation for modeling OGD/R, and group administration was performed. Cell viability and cytotoxicity were detected by CCK8 and LDH assay kit, respectively and the morphology of HT22 cells was observed by inverted microscope. Western blot and qRT-PCR were employed to detect the protein and mRNA expression levels of Bax, Bcl-2 and caspase-3, respectively. Then HT22 cells were assigned into the control group, OGD/R group, si-NC group, si-ASK1 group, TQHXD-CSF group and TQHXD-CSF+si-ASK1 group. Cell viability, proliferation and apoptosis were determined by CCK8, electric cell-substrate impedance sensing(ECIS), and Hoechst staining and flow cytometry, respectively. The protein expression of MKK4, p-MKK4, JNK, p-JNK, c-Jun, p-c-Jun, Cyt C, Bax, Bcl-2 and caspase-3 was tested by Western blot. The results showed that compared with OGD/R group, TQHXD-CSF significantly enhanced cell viability, improved cell morphology and reduced the protein and mRNA expression levels of Bax, Bcl-2 and caspase-3. In addition, when ASK1 was silenced, compared with OGD/R group, TQHXD-CSF remarkably improved cell viability, and decreased apoptosis rate and the protein expression levels of p-MKK4, p-JNK, p-c-Jun, Cyt C, Bax/Bcl-2 and caspase-3, but the effect was not as good as that of TQHXD-CSF+si-ASK1 group. In conclusion, TQHXD-CSF can inhibit apoptosis mediated by ASK1/MKK4/JNK signaling pathway in OGD/R-damaged HT22 cells, and has protective effect on ischemia-reperfusion injury.

Related Organizations
Keywords

Oxygen, Glucose, Proto-Oncogene Proteins c-bcl-2, Caspase 3, MAP Kinase Signaling System, Reperfusion Injury, Humans, Apoptosis, RNA, Messenger, bcl-2-Associated X Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities