Powered by OpenAIRE graph

Perspectives on Epidermal Growth Factor Receptor Regulation in Triple-Negative Breast Cancer: Ligand-Mediated Mechanisms of Receptor Regulation and Potential for Clinical Targeting.

Authors: Carly Bess, Williams; Adam C, Soloff; Stephen P, Ethier; Elizabeth S, Yeh;

Perspectives on Epidermal Growth Factor Receptor Regulation in Triple-Negative Breast Cancer: Ligand-Mediated Mechanisms of Receptor Regulation and Potential for Clinical Targeting.

Abstract

Currently, there are no effective targeted therapies for triple-negative breast cancer (TNBC) indicating a critical unmet need for breast cancer patients. Tumors that fall into the triple-negative category of breast cancers do not respond to the targeted therapies currently approved for breast cancer treatment, such as endocrine therapy (tamoxifen, aromatase inhibitors) or human epidermal growth factor receptor-2 (HER2) inhibitors (trastuzumab, lapatinib), because these tumors lack the most common breast cancer markers: estrogen receptor, progesterone receptor, and HER2. While many patients with TNBC respond to chemotherapy, subsets of patients fare poorly and relapse very quickly. Studies indicate that epidermal growth factor receptor (EGFR) is frequently overrepresented in TNBC (>50%), suggesting EGFR could be used as a biomarker and target in breast cancer. While it is clear that this growth factor receptor plays an integral role in TNBC, little is known about the mechanisms of sustained EGFR activation and how to target this protein despite availability of EGFR-targeted inhibitors, suggesting that our understanding of EGFR deregulation in TNBC is incomplete.

Related Organizations
Keywords

Receptor, ErbB-2, Antineoplastic Agents, Lapatinib, Triple Negative Breast Neoplasms, Trastuzumab, Ligands, ErbB Receptors, Receptors, Estrogen, Biomarkers, Tumor, Quinazolines, Humans, Female, Receptors, Progesterone

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Related to Research communities
Cancer Research