Powered by OpenAIRE graph

Phosphorylation of p35 and p39 by Cdk5 determines the subcellular location of the holokinase in a phosphorylation-site-specific manner.

Authors: Akiko, Asada; Taro, Saito; Shin-ichi, Hisanaga;

Phosphorylation of p35 and p39 by Cdk5 determines the subcellular location of the holokinase in a phosphorylation-site-specific manner.

Abstract

Cdk5 is a member of the cyclin-dependent kinase (Cdk) family, which is activated by neuronal activators p35 or p39. Cdk5 regulates a variety of neuronal activities including migration, synaptic activity and neuronal death. p35 and p39 impart cytoplasmic membrane association of p35-Cdk5 and p39-Cdk5, respectively, through their myristoylation, but it is not clearly understood how the cellular localization is related to different functions. We investigated the role of Cdk5 activity in the subcellular localization of p35-Cdk5 and p39-Cdk5. Cdk5 activity affected the localization of p35-Cdk5 and p39-Cdk5 through phosphorylation of p35 or p39. Using unphosphorylated or phosphomimetic mutants of p35 and p39, we found that phosphorylation at Ser8, common to p35 and p39, by Cdk5 regulated the cytoplasmic localization and perinuclear accumulation of unphosphorylated S8A mutants, and whole cytoplasmic distribution of phosphomimetic S8E mutants. Cdk5 activity was necessary to retain Cdk5-activator complexes in the cytoplasm. Nevertheless, small but distinct amounts of p35 and p39 were detected in the nucleus. In particular, nuclear p35 and p39 were increased when the Cdk5 activity was inhibited. p39 had a greater propensity to accumulate in the nucleus than p35, and phosphorylation at Thr84, specific to p39, regulated the potential nuclear localization activity of the Lys cluster in p39. These results suggest that the subcellular localization of the Cdk5-activator complexes is determined by its kinase activity, and also implicate a role for p39-Cdk5 in the nucleus.

Related Organizations
Keywords

Cell Nucleus, Neurons, Cell Membrane, Cyclin-Dependent Kinase 5, Nerve Tissue Proteins, Mice, HEK293 Cells, COS Cells, Chlorocebus aethiops, Animals, Humans, Phosphorylation, Holoenzymes, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%