Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Visionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Vision
Article . 2013

The ribbon-associated protein C-terminal-binding protein 1 is not essential for the structure and function of retinal ribbon synapses.

Authors: Thirumalini, Vaithianathan; Wendy, Akmentin; Diane, Henry; Gary, Matthews;

The ribbon-associated protein C-terminal-binding protein 1 is not essential for the structure and function of retinal ribbon synapses.

Abstract

Synaptic ribbons are organelles found at presynaptic active zones of sensory neurons that generate sustained graded electrical signals in response to stimuli, including retinal photoreceptor cells and bipolar neurons. RIBEYE is the major and specific protein constituent of ribbons; however, over the past decade an increasing number of other proteins have been identified at ribbon active zones, including C-terminal-binding protein 1 (CtBP1; a regulator of transcription and membrane trafficking that might bind to the B domain of RIBEYE). The appearance of CtBP1 together with RIBEYE suggests that it may contribute to ribbon function, but the possible role of CtBP1 at ribbon synapses has not yet been examined. Using CtBP1-knockout mice, we tested for functional effects of absence of CtBP1 protein.Confocal microscopy, electrophysiology, and electron microscopy were used to examine the structure and function of ribbon synapses in the retina and in isolated bipolar neurons from CtBP1 null mice compared with their wild-type littermates.Expression of ribbons appeared to be normal in CtBP1 null mouse retina as revealed by immunofluorescence with an antibody to the B domain of RIBEYE and by binding studies using a fluorescent peptide that binds to RIBEYE in ribbons of living bipolar cells. Electron microscopy also showed grossly normal pre- and postsynaptic organization of ribbon synapses in both photoreceptors and bipolar cells. Synaptic vesicles were normal in size, but the overall density of reserve vesicles was reduced by ~20% in the cytoplasm of CtBP1 null ribbon synaptic terminals. However, the reduced vesicle density did not detectably alter synaptic function of bipolar neurons as revealed by activity-dependent loading of synaptic vesicles with FM4-64, presynaptic calcium current, capacitance measurements of synaptic exocytosis, and destaining of FM dye upon stimulation.Overall the results suggest that CtBP1 protein is not essential for the formation of functional ribbon synapses in the retina.

Related Organizations
Keywords

Mice, Knockout, Retinal Bipolar Cells, Pyridinium Compounds, Phosphoproteins, Retina, DNA-Binding Proteins, Quaternary Ammonium Compounds, Alcohol Oxidoreductases, Mice, Synapses, Animals, Synaptic Vesicles, Co-Repressor Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
gold