Role of the pro-alpha2(I) COOH-terminal region in assembly of type I collagen: disruption of two intramolecular disulfide bonds in pro-alpha2(I) blocks assembly of type I collagen.
Role of the pro-alpha2(I) COOH-terminal region in assembly of type I collagen: disruption of two intramolecular disulfide bonds in pro-alpha2(I) blocks assembly of type I collagen.
Collagen biosynthesis is a complex process that begins with the association of three procollagen chains. A series of conserved intra- and interchain disulfide bonds in the carboxyl-terminal region of the procollagen chains, or C-propeptide, has been hypothesized to play an important role in the nucleation and alignment of the chains. We tested this hypothesis by analyzing the ability of normal and cysteine-mutated pro-alpha2(I) chains to assemble into type I collagen heterotrimers when expressed in a cell line (D2) that produces only endogenous pro-alpha1(1). Pro-alpha2(I) chains containing single or double cysteine mutations that disrupted individual intra- or interchain disulfide bonds were able to form pepsin resistant type I collagen with pro-alpha1(I), indicating that individual disulfide bonds were not critical for assembly of the pro-alpha2(I) chain with pro-alpha1(I). Pro-alpha2(I) chains containing a triple cysteine mutation that disrupted both intrachain disulfide bonds were not able to form pepsin resistant type I collagen with pro-alpha1(I). Therefore, disruption of both pro-alpha2(I) intrachain disulfide bonds prevented the production and secretion of type I collagen heterotrimers. Although none of the individual disulfide bonds is essential for assembly of the procollagen chains, the presence of at least one intrachain disulfide bond may be necessary as a structural requirement for chain association or to stabilize the protein to prevent intracellular degradation.
- Boston University United States
Alanine, Base Sequence, Cell Line, Mice, Mutagenesis, Site-Directed, Animals, Collagen, Cysteine, Disulfides, Cloning, Molecular, Protein Precursors, Dimerization, Protein Processing, Post-Translational, DNA Primers
Alanine, Base Sequence, Cell Line, Mice, Mutagenesis, Site-Directed, Animals, Collagen, Cysteine, Disulfides, Cloning, Molecular, Protein Precursors, Dimerization, Protein Processing, Post-Translational, DNA Primers
10 Research products, page 1 of 1
- 1978IsAmongTopNSimilarDocuments
- 2004IsAmongTopNSimilarDocuments
- 2001IsAmongTopNSimilarDocuments
- 2002IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 1979IsAmongTopNSimilarDocuments
- 1979IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
