Powered by OpenAIRE graph

In vivo heat shock protein assembles with septic liver NF-kappaB/I-kappaB complex regulating NF-kappaB activity.

Authors: Hsiang-Wen, Chen; Hung-Tien, Kuo; Shu-Jung, Wang; Tzong-Shi, Lu; Rei-Cheng, Yang;

In vivo heat shock protein assembles with septic liver NF-kappaB/I-kappaB complex regulating NF-kappaB activity.

Abstract

This study elucidates the mechanism through which heat shock treatment influences the outcome of sepsis. Post-heat shock sepsis was induced in rats by CLP 24 h after whole-body hyperthermia. Liver cytosolic and nuclear fractions were collected and analyzed in early and late sepsis rats (sacrificed 9 and 18 h after CLP, respectively). During sepsis, levels of I-kappaB and nuclear factor-kappaB (NF-kappaB) declined in the cytosol of liver, whereas NF-kappaB increased in nucleus. NF-kappaB activity was significantly enhanced during sepsis, and the products of NF-kappaB target genes, such as TNF-alpha and inducible nitric oxide synthase (iNOS), were overexpressed. Heat shock treatment, inducing heat shock protein synthesis, prevented down-regulation of cytosolic I-kappaB and decreased translocation of NF-kappaB into the nucleus. Therefore, the sepsis-induced acceleration of NF-kappaB activation was inhibited. Expression of TNF-alpha and iNOS mRNA was also down-regulated. Coimmunoprecipitation with anti-NF-kappaB (p65) and anti-IkappaB antibodies verified an assembling phenomenon of heat shock protein (HSP) 72 with NF-kappaB and I-kappaB. We suggest that the mechanism preventing septic activation of NF-kappaB is that oversynthesized HSP72 forms a complex with NF-kappaB/I-kappaB, thus inhibiting nuclear translocation of NF-kappaB. HSP72 appears to play a crucial protective role in modulating the gene expression controlled by NF-kappaB in sepsis.

Related Organizations
Keywords

Cell Nucleus, Male, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Active Transport, Cell Nucleus, NF-kappa B, Down-Regulation, Enzyme-Linked Immunosorbent Assay, DNA, Hyperthermia, Induced, Rats, Rats, Sprague-Dawley, Protein Transport, Cytosol, Liver, Animals, Immunoprecipitation, I-kappa B Proteins, RNA, Messenger, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%