Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationer från U...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

Influence of climate change on Organism Abundance in the Kiruna Region, Northern Sweden: Insights from-long term high-quality DNA sequencing

Authors: Sandström, Anton;

Influence of climate change on Organism Abundance in the Kiruna Region, Northern Sweden: Insights from-long term high-quality DNA sequencing

Abstract

This study investigates if the area around Kiruna, Northern Sweden has experienced large shifts in weather conditions and whether these have affected organism abundances. With a significant increase in global temperature and an increase in average temperature of 1.9 °C in Sweden during the last 130 years, it is crucial to understand the effect of climate change on organisms. The Swedish Defense Research Agency deployed an air filter station to monitor radioactive fallout. The archived filters allowed for the creation of a high-resolution time series of organism composition ranging from 1974 to 2008, based on DNA sequencing. The organisms were clustered into 17 distinct clusters based on their similarities in time series patterns. This study found that Cluster 2 (plant pathogenic bacteria), Cluster 3 (wetland microorganisms) and Cluster 5 (planktonic bacteria) exhibited changepoint correlations with relevant climate variables. Plotting the 3 clusters and their relevant climate variables revealed that sea surface temperatures have a positive influence on the abundance of both Cluster 2 and 5. Frost change days negatively influenced Cluster 2. Dry spells positively influenced Cluster3 and 5. Additionally, the results suggest that air pressure and water deficiency in soil are predictors for Cluster 5. Overall, these findings provide insights into how climate change affects different organisms and can help inform future management decisions for these ecosystems.

Related Organizations
Keywords

Ekologi, Ecology, Climate change, Genetics and Genomics, Genetik och genomik, DNA-sequencing, ecology, microorganisms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities