Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

Producing medically important human membrane proteins for structural studies.

Authors: How, Jonathan Guan Zhong.;

Producing medically important human membrane proteins for structural studies.

Abstract

Integral membrane proteins are essential for many activities within a cell but the structure of only few of these proteins have been solved. Highly purified amounts of proteins are required for crystallization and structural studies thus signifying a need to improve techniques to achieve this purpose. A total of five different membrane proteins (Ergic1, Ergic2, Ergic3, Mrs2 and Stim1) were studied for the testing of new purification strategies. This project aims to produce high quantities of medically relevant human membrane proteins suitable for crystallization using strategies like screening different vectors, cell strains and induction systems. The use of a double affinity tag purification system was used to increase the purity and expression of proteins in different Escherichia coli host cells. The membrane protein, Ergic2, was successfully expressed and purified. The success of this purification strategy will pave the way for large scale production of highly purified proteins that can be used for crystallization studies. Bachelor of Science in Biological Sciences

Related Organizations
Keywords

:Science::Biological sciences::Biophysics [DRNTU]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities