Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Repository and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

Bacurd2 is a novel player during cortical development, which influences the migration and morphological differentiation of cerebral cortical neurons

Authors: Gladwyn-Ng, Ivan;

Bacurd2 is a novel player during cortical development, which influences the migration and morphological differentiation of cerebral cortical neurons

Abstract

Members of the Bacurd (BTB-domain containing adaptor for Cul3-mediated RhoA degradation) proteins are implicated in neurological disorders such as Autism Spectrum Disorders, but their functions during brain development remain poorly understood. In this study, we describe a novel role for Bacurd2 during mouse cerebral cortical development, with forced expression and knockdown of Bacurd2 significantly disrupting the migration of cortical cells in embryonic mouse brains. In neuritogenic assays, overexpression of Bacurd2 in PC12 cells results in significant impairment of neuritogenesis. We further demonstrate the protein-protein interacting terminal domains of Bacurd2 to possess complementary functions for neuritogenesis, with Rnd2 and Cul3 as interacting partners to its carboxy and amino termini, respectively. Although suppression of Rnd2 expression by RNAi impairs cell migration in vivo[2,3], we were not able to rescue the migration defect of Rnd2-deficient cortical neurons with wild type Bacurd2 alone but only with chimeric Bacurd2 polypeptides that localise to the perinuclear region of Rnd2. Further analysis of the migration profile showed defective entry of Rnd2-deficient cells into the cortical plate when co-electroporated with chimeric Bacurd2 polypeptide that lack Cul3 binding ability. Our results highlight a novel mechanism for Cul3-Bacurd2-Rnd2 interaction that regulates morphology of neurons, as well as mediating radial migration of immature neurons during cerebral cortical development.

Bacurd2 is a novel interacting partner to Rnd2 which controls radial migration within the developing mammalian cerebral cortex

Related Organizations
Keywords

Cortical developement, Sciences du vivant, Neuronal differentation, Life sciences, Neuroscience

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average