Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ General and Comparat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
General and Comparative Endocrinology
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Multiple structurally distinct ERα mRNA variants in zebrafish are differentially expressed by tissue type, stage of development and estrogen exposure

Authors: Cotter, Kellie A.; Yershov, A.; Novillo Villajos, Apolonia; Callard, Gloria V.;

Multiple structurally distinct ERα mRNA variants in zebrafish are differentially expressed by tissue type, stage of development and estrogen exposure

Abstract

It is well established that estrogen-like environmental chemicals interact with the ligand-binding site of estrogen receptors (ERs) to disrupt transcriptional control of estrogen responsive targets. Here we investigate the possibility that estrogens also impact splicing decisions on estrogen responsive genes, such as that encoding ERα itself. Targeted PCR cloning was applied to identify six ERα mRNA variants in zebrafish. Sequencing revealed alternate use of transcription and translation start sites, multiple exon deletions, intron retention and alternate polyadenylation. As determined by quantitative (q)PCR, N-terminal mRNA variants predicting long (ERαA(L)) and short (ERα(S)) isoforms were differentially expressed by tissue-type, sex, stage of development and estrogen exposure. Whereas ERα(L) mRNA was diffusely distributed in liver, brain, heart, eye, and gonads, ERα(S) mRNA was preferentially expressed in liver (female>male) and ovary. Neither ERα(L) nor ERα(S) transcripts varied significantly during development, but 17β-estradiol selectively increased accumulation of ERα(S) mRNA (∼170-fold by 120 hpf), an effect mimicked by bisphenol-A and diethylstilbestrol. Significantly, a C-truncated variant (ERα(S)-Cx) lacking most of the ligand binding and AF-2 domains was transcribed exclusively from the short isoform promoter and was similar to ERα(S) in its tissue-, stage- and estrogen inducible expression. These results support the idea that promoter choice and alternative splicing of the esr1 gene of zebrafish are part of the autoregulatory mechanism by which estrogen modulates subsequent ERα expression, and further suggest that environmental estrogens could exert some of their toxic effects by altering the relative abundance of structurally and functionally distinct ERα isoforms.

Country
Spain
Related Organizations
Keywords

570, Myocardium, Estrogen Receptor alpha, Brain, Gene Expression, Estrogens, Genética humana, Eye, Alternative Splicing, Liver, Endocrinología, Animals, RNA, Messenger, Gonads, Zebrafish

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Green
bronze